- 2021-12-23 发布 |
- 37.5 KB |
- 28页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教版2020年秋季小学五年级数学上册全册单元备课教材分析
人教版2020年秋季小学五年级数学上册 全册单元备课教材分析 目 录 第一单元 小数乘法 1 第二单元 位置 9 第三单元 小数除法 12 第四单元 可能性 14 第五单元 简易方程 16 第六单元 多边形的面积 17 第七单元 数学广角 23 第八单元 总复习 26 27 第一单元 小数乘法 一、教学内容 1.小数乘法的计算方法。 2.积的近似值。 3.整数乘法运算定律推广到小数。 4.解决问题。 和原实验教材相比,变化有: 一是,引导学生概括总结小数乘法的计算法则,例3后增加概括总结法则的活动,给出不完整的计算法则文本。二是, 不再安排有关小数乘法的两步运算例题,直接迁移应用到小数四则运算。三是,增加运用小数乘法解决实际问题的例题,分别是估算和分步计费的实际问题。 二、教学目标 ⒈使学生理解和掌握小数乘法的算理和计算方法,能正确地进行小数乘法的计算和验算。 ⒉使学生会用“四舍五入”法截取积(小数)的近似值。 ⒊使学生理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行小数乘法的简便运算。 ⒋让学生在解决有关小数乘法的简单实际问题过程中,理解估算的意义,初步形成估算意识,提高问题解决的能力。 ⒌让学生经历自主探索小数乘法计算方法、理解算理和解释算法的过程,体会转化的数学思想,初步培养学生学习的迁移能力和推理能力。 三、编排特点 1.选择“进率是十的常见量”作为学习素材,引入小数乘法的学习。 27 对于五年级学生的生活经验而言,“元、角、分”“吨、千克、克”“米、分米、厘米”是他们熟悉的计量单位。根据学生已有的这些知识基础,教材从丰富多彩的校内外活动中,选择“买风筝”(与元、角有关)“刷油漆”(与米、分米和千克、克有关)的活动为背景,引入小数乘法的学习。这样的学习背景,不但能激发学习兴趣,而且能促成学生利用常见的计量单位之间的十进关系,顺利沟通小数乘法与整数乘法的联系,利于学生将新知纳入已有的认知系统中。 2.应用转化和对比的方法,概括小数乘法的计算方法。 小数的书写方式、进位规则均与整数相同,所以,教材紧扣两者的密切联系,引导学生: ①用转化的方法,将小数乘法转化为整数乘法。 ②用对比的方法,处理积中小数点的位置问题。教材在例3的“做一做”后,采用对比的方法,引导学生分别观察因数和积中小数的位数,找出它们之间的关系,然后利用这一关系,准确找到积中小数点的位置。 ③帮助学生按一定顺序概括小数乘法的一般计算方法。教学例3和“做一做”之后,在让学生讨论、归纳的基础上,引导学生自主、有序地概括出小数乘法的计算方法。教材以记录讨论结果的形式,呈现不完全的计算法则的文本,让学生在理解的基础上叙述或填写法则的关键词。这样,既可以让学生了解计算法则的来源,理解其含义,防止死记硬背法则条文,又起到促进学生对具体计算案例的特点进行总结、归纳、抽象、概括的作用,获得对小数乘法的意义的体会和理解,教给学生探索、总结规律的数学学习方法。 ④突破小数乘法中的难点问题。例4教学小数乘法中的难点问题:所得的积的小数位数不够,要在前面用0补足,再点小数点。 27 四、具体内容 (一)小数乘整数 1.例1:结合具体量,教学小数乘整数。 为什么要结合具体量呢?一方面,因为结合具体量(人民币单位),可以利用人民币单位间的十进关系,沟通小数乘法与整数乘法的联系。另一方面,为理解“小数乘整数”的算理提供感性支撑。教材这里呈现来学生不同的计算方法,重点要说明的是将元转化为角的方法,使学生明确是把小数乘整数转化为整数乘整数来计算。 教学时,可引导学生提出买风筝计算钱数的问题。然后先解决书上女孩想要解决的问题。放手让学生利用自己已有的知识和经验解决,重点说明将元转化为角的方法。在此基础上,解决其他买风筝的问题。 2.例2:脱离具体量,教学小数乘整数 有了例1的感性经验,这里脱离具体量,用因数与积的变化规律说明将小数乘整数转化为整数乘法的理由。 教材通过图示呈现转化的过程,帮助学生理解。(原来转化的过程中是说扩大到它的多少倍,缩小到它的多少分之一。本次教材修订在因数和积的变化规律中,是利用乘几除以几进行说明,到了小数点移动引起小数大小变化的规律中说明:乘几就是扩大到它的几倍,除以几就是缩小到它的几分之一。因此,教材这里根据因数和积的变化规律转化时,采用的是用乘几除以几的方式。当然老师教学中也可以用扩大缩小来说明。) 最后说明如果积的小数末尾有0,根据小数的基本性质,这里的“0”可去掉。 教学时,教师要注意引导学生紧紧抓住例1中的计算经验,特别是将“元”转化为“角”的经验来学习例2。先提出0.72元×5你会 27 计算吗?再去掉元,提出0.72×5该怎么计算。然后放手让学生应用已有的整数乘法经验自主计算“0.72×5”,列出竖式,并尝试对过程做出合理的解释。最后应引导学生小结小数乘整数的竖式计算要点:(1)按整数乘法的规则进行;(2)处理好积中小数点的位置,因数中有几位小数,积中也应有几位小数;(3)算出积以后,应根据小数的基本性质用最简方式写出积,积中小数末尾的“0”可去掉。 (二)小数乘小数 1.例3:小数乘小数。 有了例2的计算经验,这里学生容易想到把第二个因数也转化为整数,即将小数乘法转化为整数乘法来计算,故教材直接给出转化和计算的过程。在“做一做”之后,引导学生观察、归纳因数与积的小数位数之间的关系。为后面总结计算法则作准备。 教学时,可以让学生根据图意列出乘法算式,然后让学生自主尝试计算2.4×0.8,再组织学生共同研讨它的竖式算法及算理。让学生将有代表性的方法展示出来,并简述其道理。可能有学生将“米”化为“分米”,将小数乘法转化为整数乘法来计算,也可能学生按书上的方法进行计算。教师应引导学生沟通两种方法的联系,以帮助学生理解“2.4×0.8”的算理。 2.总结计算法则。 在前面学习的基础上,组织学生交流、概括总结出计算法则。 这是教材新的变化,在提示让学生讨论交流的基础上,以记录讨论结果的形式呈现不完全的计算法则文本,让学生补充完整。帮助学生在理解算理的基础上,更好地掌握算法。 3.例4:难点问题。 27 教学积的小数位数不够的难点问题。利用小数点移动的变化规律,帮助学生理解要在前面用0补足,再点小数点。 这样,通过循序渐近的方式让学生扎实理解和掌握小数乘法的算理算法。 例1,结合具体量,将小数乘法转化为整数乘法来计算,感受其转化的合理性。 例2,脱离具体量,引导学生根据因数和积的变化规律转化为整数乘法。 例3,教学小数乘小数,同样是转化为整数乘法来计算。结合做一做的练习观察,发现积的小数位数和因数的小数位数之间的关系。 在此基础上,总结出计算小数乘法的一般方法。 例4,突破小数乘法的难点问题。 层层递进,各有重点,让学生逐渐理解和掌握小数乘法的计算方法。 4.例5:小数倍。 通过“非洲野狗追赶鸵鸟”有趣情境引出,使学生知道利用小数也可以表示两个数量间的倍数关系。并且领会有时 “用小数倍表示两个数量间的关系”比较直观。然后再计算。 接下来,由检验计算是否正确,提出验算要求,培养验算习惯。 对于验算方法不作统一规定,教材呈现了三种,一种是“把因数的位置交换一下,再乘一遍。”二是“用计算器验算。”三是观察法,借助前面的学习经验,因为第二个因数大于1,所以积一定大于第一个因数,所以答案7.28是错的。这里学生只要会用合适的方法验算就行。 27 教学时,结合本例让学生领悟有时“用小数倍表示两个数量间的关系”比较直观。可请学生说一说“鸵鸟的最高速度是非洲野狗的1.3倍”中“1.3倍”的含义。验算的引入,既可直接由检验书上女孩的计算引出,也可由检查自己的计算引出。教材对如何验算不作统一要求。 (三)积的近似值 1.例6:取积的近似值。 创设一个“狗帮助人们抓坏蛋”的情境,通过计算使学生认识到:在解决实际问题时,当积的小数位数比较多时,有时不需要保留那么多的小数位数,只要根据实际需要求出积的近似数就可以了。 求积的近似数所用的方法同求一个小数的近似数的方法完全相同。因此,本例教学前,可组织学生做适当的练习,让他们回忆求一个小数的近似数的方法,为自主求积的近似数作好准备。 (四)整数乘法运算定律推广到小数 1.推广。 原来安排有例题专门教学小数乘法的两步运算来说明运算顺序。事实上,运算顺序跟数域无关,不管是整数也好,小数也好,包括后面学习的分数,运算顺序都是一样的。所以,教材这里直接说明小数四则混合运算的顺序和整数一样,让学生直接进行知识的迁移类推。 教材结合具体算式说明整数乘法运算定律对于小数乘法同样适用。分两个层次编排: ①给出三组算式,让学生观察、计算,找出每组中两个算式的关系。 ②用归纳的方法类推出“整数乘法的交换律、结合律和分配律,对于小数乘法也适用。” 27 通过这两个层次的活动,逐步培养学生合情推理的能力。 2.例7:乘法运算定律的应用。 教材通过乘法运算定律的应用,一方面,让学生应用乘法运算定律进行简便运算,体会运算的简便性。另一方面,进一步加深对运算定律的理解。 教学中,注意在复习整数乘法运算定律的基础上进行教学。因为整数计算中学生已有了应用乘法运算定律进行简便运算的基础,这里可以引导学生类推。同时注意加强对乘法分配律应用的教学。因为乘法分配律的应用有正方两个方面,学生容易出错。如,练习第4题“1.5×105”和“1.2×2.5+0.8×2.5”都要运用乘法分配律进行简算,“1.5×105”是乘法分配律正向应用,而在“1.2×2.5+0.8×2.5”是乘法分配律的逆向应用。 (五)解决问题 教材新增两个解决问题的例题,分别是估算和分段计费的实际问题。一方面巩固小数乘法的计算;另一方面进一步培养学生应用数学解决实际问题的能力。 1.例8:估算。 创设超市购物的情境,通过适合的问题背景,体会估算在解决实际问题的应用。教学中注意两点:一是教给学生阅读理解的方法。让学生体会当信息和数据比较多时,借助表格来整理,可以使信息和数据更清晰、直观,能帮助我们更好地分析数量关系。二是培养学生估算意识,体会估算的不同策略。让学生根据数据和问题灵活选择算法,像这类够不够的问题,可以用估算解决。估算时,要根据实际数据选择适当的估算策略。比如,第一个问题,是通过把钱数估大,发现都 27 不超过100元来判断够的。第二个问题,是通过把钱数估小,发现都已经超过100元来判断不够的。 2.例9:解决分段计费的实际问题。 解决分段计费问题的关键是理解题意。这里要解决“要付多少钱”,就必须知道行驶里程和收费标准。而收费标准重点要让学生理解两点:一是分段计费;一是3千米以上,不足1千米按1千米计算(也就是按“进一法”取整数)。教学时,可以采用摘录条件的方法帮助学生理解(如下图)。同时,分段计费的问题就是分段函数的问题。通过学习,让学生初步体会一一对应思想和函数思想。如填好价格表后,引导学生观察,思考行驶里程与出租车费之间的联系及它的变化情况。有条件的可以借助图示进一步体会分段计费问题的特点。需要注意地是,画图时不能直接在方格纸上描点连线,因为行驶的里程数要取整数来计算。 五、教学建议: 1.重点引导学生用转化的方法学习小数乘法。 由于小数乘法与整数乘法之间有着十分密切的联系,因此,教学时应紧紧抓住这种联系,帮助学生将未知转化为已知。如,例2教学“0.72×5”时,引导学生思考:“能不能转化为整数来计算?”引导学生经历将未知转化为已知的学习过程,同时获得用转化的思想方法去探究新知的本领。 2.指导学生对小数乘法的算理作出合理的解释,提高简单的推理能力。 本单元学习过程中,学生感到困难的不是小数乘法计算方法的掌握,而是对算理的理解和表述。因此,教学时应给学生提供充分的思考、交流的机会,帮助学生对计算过程作出合理的解释。重点是引导 27 学生从积与因数的关系出发,强调转化的思想、方法。如,例3教学“2.4×0.8”时,应引导学生说出将因数2.4和0.8转化成整数,因数分别扩大到原来的10倍,相应的积192就扩大到原来的100倍,所以要缩小到原来的,也就是1.92。在理解算理的基础上,引导学生讨论、交流,会正确表述,能正确计算。 3.组织学生讨论、归纳小数乘法的计算方法。 本单元教材重视引导学生讨论、归纳小数乘法的计算方法。在组织学生自主总结小数乘法计算方法时,要特别突出两点。一是转化的方法,将小数乘法转化为整数乘法来算;二是小数点的处理,也就是利用因数和积的大小关系来确定小数点的位置。 第二单元 位置 一、教学内容 用数对确定物体的位置。 本单元内容由原六年级上册移来。 二、教学目标 1.结合具体情境,让学生能用数对(正整数)表示物体的位置。 2. 让学生能在方格纸上用数对表示物体的位置。 3.让学生知道数对与方格纸上的点存在对应关系。 三、编排特点 本单元内容的编排是在学生一年级上册学习了用上、下、前、后、左、右确定位置,三年级下册学习了用东南西北等词语描述物体方向的基础上,进一步学习用数对确定物体的位置。也为后面进一步学习“根据方向和距离两个参数确定物体的位置”打下基础。编排上主要有以下几个特点。 1.从实际情境出发,帮助学生掌握用数对确定位置的方法。 27 学生在生活中已经能用“第几”描述物体的位置,还经历了类似用“第几排第几个”的方式找到物体的位置,如教室里的座位、电影院的座位等,初步具有用数表示位置的经验。教材充分利用并及时提升了学生的这些已有经验。例1通过呈现确定多媒体教室中学生的座位情境,引出本单元内容的学习,借助教师操作台上的学生座位图,迅速将实际的具体情境数学化,抽象成在平面图上确定位置,并帮助学生理解如何用数对确定位置的方法。 2.结合具体情境,初步感知直角坐标系的思想和方法。 结合熟悉的生活情境,让学生在具体情境中或方格纸上用抽象的数对表示物体的位置,初步感知直角坐标系的思想,为后面“图形与坐标”的学习作好铺垫。 例如,例1学生根据张亮坐在教室的第2列、第3行用数对(2,3)表示,初步建立与座位示意图的对应关系,在同样的规则下,再次通过周明坐在教室的第1列、第3行怎样用数对表示和给出数对确定位置的活动,加深数对与座位示意图行列的一一对应关系。这样的学习过程有利于学生直观体会直角坐标系的思想。 例2更为直接地呈现了方格纸这一学生熟悉的材料,其中同样蕴含着直角坐标系的思想,只不过没有明确表示出x、y轴。不同的是,例1中物体的位置相当于方格纸中的每个格子,而例2进一步抽象为一个点,用方格纸上的格点(横线和竖线的交点)来表示。可以说,方格纸是渗透直角坐标系的有效载体,借助方格纸来学习也是实践直观几何的重要手段。小学几何的学习立足于直观几何,通过方格纸研究几何图形的有关特点和性质,获得几何活动经验,发展几何直观,逐步培养学生推理的意识和能力。 四、具体编排 27 1.例1:用数对表示具体情境中物体的位置。 学生在生活中已经会用两个数描述位置,比如第几排第几个等,这里学习数学上位置的表示方法。教材呈现的是一个教室,老师的讲桌上有一个座位示意图,哪个学生如果有问题,按一下开关,座位示意图上的灯就会亮起来。这里编排的层次主要有: (1)明确“列”“行”的含义及一般规则。结合“教师是如何确定张亮的位置”的讨论,使学生明确:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。 (2)给出数对表示的方法。由小精灵直接给出用数对表示的方法,正是有了前面的规则才能保证数对表示的唯一性。 (3)明确数的顺序,体会一一对应思想。通过比较王艳和赵雪两位同学的位置进一步明确数对中两个数是有顺序的。并体会数对和每个人的位置是一一对应的。 2.例2:在方格纸上用数对确定物体的位置。 教材进一步抽象,通过方格纸把用数对表示位置的实际问题抽象成用数对表示平面上点的位置的数学问题,使学生明确如何在方格纸上用数对确定点的位置,感悟数对与物体位置的一一对应关系。这种方格纸的呈现和数据的表示特点,初步渗透了直角坐标系的思想。 教学中,要注意渗透数形结合思想。如引导学生比较大象馆和海洋馆的位置数对,结合示意图观察在方格纸上这两个场馆是在同一条横线(行)上,相应的数对有什么特点。提问“如果两个数对中的第1个数相同,这两个场馆的位置有什么特点”,帮助学生初步感受数形结合的思想,加深对方格纸上用数对确定位置的理解。教学时,还可以根据需要增加一些场馆,或者对数据进行调整。 27 此外,本单元的练习安排注意体现两方面,一是联系实际。如第4题,中药房中根据药方抓药的场景,进一步让学生用数对表示位置。体会简洁性。二是综合应用。结合前面学习的方向来描述路线和位置,如第8题。也为后面的学习作好铺垫。 四、教学建议 1.充分利用学生已有的生活经验和知识基础,经历用数对表示位置的学习过程。 学生在生活中已经具有大量用数对确定物体位置的经验,教学中应充分利用这些经验和知识为学生提供探究的空间,帮助学生将用生活经验描述位置上升为用数学方法确定位置,发展数学思考,培养空间观念。同时,在“用数对确定位置”的教学过程中应注重学生的自主探究学习,让学生经历表示物体位置的过程,在比较中发现用数对表示位置的简洁与有效。 2.适时渗透数形结合的思想和方法,感悟数对与位置的一一对应思想。 如练习中的第7题,让学生发现图形平移后,位置变了,表示顶点位置的数对也相应的变了,发现其中的规律。教师在教学中应充分利用这些素材,通过形来研究数的特点,通过数来呈现物体的位置,在方格纸和用数对表示点的位置的方法之间架起了数与形的桥梁,使学生初步体会数形结合的思想,并感悟数对和点的位置的一一对应关系。 第三单元 小数除法 教材分析 本单元主要学习的内容有:除数是整数的小数除法、一个数除以小数、商的近似数、循环小数、用计算器探索规律、解决问 27 题以及整理和复习。教材在编排时通过晨练、编制中国结、买羽毛球等与现实生活息息相关的情境引出有关小数除法的一系列问题。小数除法的计算法则、试商的方法都与整数除法有关,因此教材重点突出怎样把除数是小数的除法转化成除数是整数的除法,多处以加强提示的方式向学生展示探究的过程。商的近似值和循环小数都是进一步研究商,通过学习,学生可以根据具体情况灵活地处理商,并认识循环小数等有关概念。而用计算器探索规律,既可使学生学习借助计算工具探索数学规律,又可激发学生的学习兴趣。 学情分析 本单元的学习重、难点是小数除法的计算方法和算理的理解,整数除法和商不变的性质等基础知识对学生理解小数除以整数的学习具有重要的作用。小数除以整数的算理要给学生充分的时间和空间,让学生真正弄懂,那么除数是小数的除法也就水到渠成。学生在学习这部分知识时,难点是不知道商的小数点要点在哪,所以教师在教学时,要联系商不变的性质来帮助学生理解算理。 教学目标 知识技能:掌握小数除法的计算方法,能正确地进行计算。会用“四舍五入”法截取商是小数的近似值,初步认识循环小数、有限小数和无限小数。 数学思考:在探索小数除法计算方法的过程中,感受转化的思想方法,发展初步的归纳、推理、概括能力,培养学生的估算意识和解决实际问题的能力。 问题解决:在学习小数除法知识的过程中,学生通过独立思考与合作交流,自主学习获取知识的方法。 27 情感态度:在小数除法简单实际问题解决的过程中,使学生体会小数除法的应用价值。 教学重点:小数除法的计算原理。 教学难点:除数是小数的小数除法商的小数点位置的确定。 课时安排12课时 1.除数是整数的小数除法……………3课时 2.一个数除以小数……………………3课时 3.商的近似数…………………………1课时 4.循环小数……………………………1课时 5.用计算器探索规律…………………1课时 6.解决问题……………………………2课时 7.整理和复习…………………………1课时 第四单元 可能性 教材分析 可能性是学习数学四个领域中“统计与概率”中的一部分。“统计与概率”中的统计初步知识,学生在之前的学习已经涉及,但概率知识对于学生而言还是一个全新的概念,它是学生以后学习有关知识的基础。本单元主要教学内容是事件发生的不确定性和可能性,并能知道事件发生的可能性是有大小的。教学关键是如何让学生把对“随机现象”的丰富的感性认识升华到理性认识。 学情分析 五年级学生已经具备了一定的生活经验和统计知识,对现实生活中的确定现象和不确定现象已经有了初步的了解,并有一定的简单分析和判断能力,但学生只是初步的感知这种不确 27 定事件,对具体的概念还没有深入地理解和运用。根据学生的年龄特点和生活经验,教师做出适当引导,学生就会进行正确的分析和判断。所以教材选用学生熟悉的现实情境引入学习内容,设计了多种不同层次的、有趣的活动和游戏,激发了学生的学习兴趣,使其感受到数学就在自己的身边,体会到数学学习与现实的联系,为学生自主探索、合作学习创造机会。 教学中,教师要利用这些情境让学生积极地参与到学习活动中,让学生在具体的操作活动中进行独立思考,使学生在大量观察、猜测、试验与交流的过程中,经历知识形成的过程,逐步丰富对不确定现象及可能性大小的体验。 教学目标 知识技能:使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。能列出简单试验所有可能发生的结果,知道事件发生的可能性的大小。 数学思考:培养学生简单的逻辑推理、逆向思维和与人交流思考过程的能力。 问题解决:能由一些简单事件发生的可能性大小逆推比较事件发生的多与少。 情感态度:通过本单元的学习使学生感受到生活中处处有数学,并能够运用可能性的知识解决生活中的问题,逐渐对统计与可能性知识产生兴趣,培养学生学习数学的兴趣。 教学重点:会用“可能”“不可能”“一定”描述事件发生的可能性。能够列出简单试验中所有可能发生的结果,知道可能性是有大小的。 教学难点:能根据可能性的大小判断物体数量的多少。 27 【课时划分】3课时 1.可能性………………………………2课时 2.掷一掷………………………………1课时 第五单元 简易方程 教材分析 本单元主要学习的是用字母表示数、运算定律、计算公式和数量关系,学习方程的意义、等式的基本性质和解简易方程,以及在解决一些实际问题中简易方程的运用。在学生已有的算术和代数知识的基础上学习简易方程,有助于培养学生的抽象概括能力,发展他们思维的灵活性,并且能够巩固和加深所学的算术知识。 学情分析 用字母表示数,对小学生来说比较抽象,学生理解起来会有一定的难度。特别是用含有字母的式子来表示数量关系,更让学生感到困难。让学生从具体的、确定的数过度到用字母表示抽象的、可变的数,对学生来说是认识上的一个飞跃。因此在教学中,教师要充分利用学生原有的相关认识基础,使学生从具体实例到一般意义的抽象概括逐渐过渡。 学生在学习这部分内容时,往往不会将含有字母的式子看作是一个量,如:苹果2元一斤,香蕉比苹果贵x 元,2+x 既表示苹果价格与香蕉价格之间的数量关系,也表示香蕉的价格,很多学生认为这只是一个式子,不是结果。而这正是学生学习简易方程的基础,所以要先学习用字母表示一个特定的数,再学习用字母表示一般的数,也就是用字母表示运算定律和计算公式,让学生有了一定的基础后,再学习用含字母的式子表示 27 数量和数量关系,这样由易到难,便于学生在数学认知上有更高的飞跃。 教学目标 知识技能:使学生初步认识用字母表示数的意义和作用,能用字母表示运算定律和计算公式等,初步了解简易方程,能用等式的性质解简易方程。 数学思考:培养学生根据具体情况,灵活选择算法的意识和能力。 问题解决:能列简易方程来解决生活中的实际问题。 情感态度:使学生感受到数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。 教学重点:用含有字母的式子表示数量关系,等式的基本性质,解方程,培养学生书写规范和自觉检验的习惯。 教学难点:用含有字母的式子表示数量关系,列方程解决实际问题 课时安排20课时 1.用字母表示数……………………………6课时 2.解简易方程………………………………12课时 3.整理和复习………………………………2课时 第六单元 多边形的面积 一、教学内容 1.平行四边形的面积。 2.三角形的面积。 3.梯形的面积。 4.组合图形的面积。 27 5.估计不规则图形的面积。 和原实验教材相比,变化主要是增加方格纸上不规则图形的面积估算。 二、教学目标 1.让学生通过动手操作、实验观察等方法,探索并掌握平行四边形、三角形和梯形的面积公式。 2.让学生会用面积公式计算平行四边形、三角形和梯形的面积,并能解决生活中一些简单的实际问题。 3.让学生认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。 4. 让学生会用方格纸估计不规则图形的面积。 三、编排特点 1.加强知识之间的联系,促进知识的迁移和学习能力的提高。 教材以图形内在联系为线索,以未知向已知转化为基本方法开展学习。安排顺序: 2.体现动手操作、合作学习的学习方式,让学生经历自主探索的过程。 各类图形面积公式的推导均采用让学生动手实验,先将图形转化为已经学过的图形,再通过合作学习探索转化后的图形与原来图形的联系,发现新图形的面积计算公式这样一个过程。同时按照学习的先后顺序,探索的要求逐步提高。 教材在编排平行四边形的面积公式推导过程中,增加了一个小组讨论活动:观察原来的平行四边形和转化后的长方形,你能发现它们之间有哪些等量关系?这是推导面积公式的关键,也是学生学习的难点。教材这里适时给出了相应的引导,帮助学生思考。在三角形和梯 27 形的面积公式推导过程中,分别增加了转化过程的示意图,帮助学生更好地探究和推导面积公式。 3.在解决实际问题中,渗透估测意识、策略。 教材新增来一个解决问题的例题,教学估算不规则图形的面积。 在生活实际中,经常会接触到不规则图形,它们的面积无法直接用面积公式计算。那么如何估测它们的面积呢?教材安排了借助方格纸估计不规则图形(树叶)面积的内容,培养学生估测的意识和解决实际问题的能力。 四、具体编排 (一)主题图 设计了一幅街区图。由小精灵提出观察的要求:“你发现了哪些图形?你会计算它们的面积吗?”引入面积计算的教学。 (二)平行四边形的面积 教材分以下三个步骤安排。 (1)从主题图中的两个花坛(一个长方形,一个平行四边形)引出如何计算平行四边形面积的问题。 (2)先用数方格的方法试一试。在方格纸上呈现一个平行四边形和一个长方形让学生数,说明不满1格的按半格计算。完成填表后,发现等底等高的长方形和平行四边形的面积相等,为转化作准备。 (3)探究平行四边形面积计算公式。突出转化思想,用割补的方法把一个平行四边形转化为一个长方形,教材用直观图展示了这一过程,通过观察两个图形之间的联系,引导学生推导出平行四边形面积的计算公式。最后结合平行四边形的图示,用字母表示面积计算公式。 27 例1是平行四边形面积公式的应用,教学中注意培养良好的书写习惯。 (三)三角形的面积 1. 继续用转化的方法探究。有了推导平行四边形面积公式的经验,这里放手让学生自己去探究。继续渗透转化思想,帮助学生理解把未知转化为已知,就能解决问题的思路。也就是把三角形转化为已经知道面积计算公式的图形。转化的方法可以割补,也可以拼摆。教材通过拼摆两个同样的三角形转化为平行四边形的方法,这种方法推导过程简单,学生比较容易理解和掌握,便于推导公式。 2. 推导过程学生独立完成。转化以后,放手让学生自己观察,写出三角形的面积计算公式,特别要强调除以2的理解。最后用字母表示出面积计算公式。 3.例2同样是三角形面积公式的应用。 (四)梯形的面积 1.转化的方式有多种:一种是分割的方法,把梯形剪成两个三角形,或将梯形剪成了一个平行四边形和一个三角形;一种是拼摆的方法,用两个一样的梯形拼成一个平行四边形。这些转化方法都是可以的,但其中用两个一样的梯形拼成一个平行四边形的方法,比较容易推导和理解,另外两种因为涉及代数式的运算,学生的推导有困难。因此教学时可以以拼摆方法为研究重点,让学生叙述推导的过程,得出梯形面积计算公式。其他方法可视学生接受能力,进行介绍。 2.例3是梯形面积公式的应用。 3.“你知道吗?”介绍古代割补的转化方法,教学中可以适当拓展,丰富学生转化的方法。 (五)组合图形的面积 27 教材提供了几个生活中的具体物品,使学生认识组合图形是由几个简单图形组合而成的。然后要求学生找一找生活中的组合图形。例4教学组合图形面积的计算,由于一个组合图形可以有不同的分解方法,也就有不同的面积计算方法,教材展示了两种方法。当然,学生可能还会有其他不同的方法,通过交流要让学生体会怎样分解能使计算更简便。 (六)估计不规则图形的面积 例5编排了不规则图形面积的估计。编排意图主要是: 1.培养估算意识。 教材安排了借助方格纸估计不规则图形(树叶)的面积,这是估算思想在图形与几何中的应用。 2.培养估算策略。 不规则图形不像规则图形,可以找到面积计算公式,我们只能估算出它的面积。而估算策略最重要的是要根据要估计的事物找到一个适合的测量标准,然后利用这个测量标准去估计。比如,前面我们学习的长度的估计,估计学校到家的路程,可以借助步长、单位时间走的距离或者自己熟悉的一个长度等,来进行估计。这里不规则图形的面积估算,同样也要找到一个度量的标准,根据树叶的大小,我们选择了每个小方格面积为1cm2的方格纸,当然学生也可以利用其他熟悉的测量标准来估计,比如用一个已知面积的图形(物品)来估计。 教学中,可以直接出示树叶,让学生思考怎样来估计它的面积,通过交流体会选择测量标准的重要性。 3.体会估算方法多样。 借助方格纸估计树叶的面积,首先可以确定它的面积范围。如教材所示,分别数出满格和不是满格的格子数,就能确定面积的区间。 27 接下来,学生可以用自己的方法进行估计,比如取面积区间的中间值;或者借助前面学习平行四边形面积时的经验,把不是满格的看作半格,估计出面积;或者把超过半格的当一格,不到半格的忽略不计(也就是四舍五入)的方法;等等,只要合理都可以。还可以引导学生:如果想估的更准确一些,可以将方格纸的每个小方格等分成更小的正方形,就能探索更接近实际面积的估计值。也就是说,选择的测量标准面积越小,得到的估计越精确。 此外,还可以将不规则图形近似看作为规则图形来估计面积,利用方格纸的刻度,找出计算规则图形面积的条件进行估算。教材也呈现了这样的方法,将树叶转化为近似的平行四边形来估计面积。 (七) 整理和复习 1.突出转化。 复习面积计算公式的推导过程,重点是突出转化的思想。 2.建立联系。 让学生发现梯形和平行四边形、三角形面积公式的内在联系:当梯形的上、下底相等时就成了平行四边形的面积,梯形的上底为0时就成来三角形面积。帮助学生理解和记忆公式。 五、教学建议 1.经历探究过程,渗透转化思想。 各类图形面积公式的推导均采用让学生动手实验,将图形转化为已经学过的图形,再探索转化后的图形与原来图形的联系,发现新图形的面积计算公式这样一个过程。按照学习的先后顺序,探索的要求逐步提高。 2.注意培养学生灵活运用公式进行计算的能力。 27 如计算梯形的面积,不一定要把上底、下底、高都找到才能计算。练习中就有根据上底、下底之和来计算面积的,教学中,注意培养学生灵活运用公式计算的能力,加深对公式的理解。 第七单元 数学广角 一、教学内容 植树问题。 本单元内容由原实验教材四年级下册移来,例3调整为封闭曲线上的植树问题。 二、教学目标 1.引导学生通过观察、猜测、试验、推理等活动,初步体会植树问题的模型思想。 2.通过画线段图初步培养学生探索解决问题有效方法的能力。 3.让学生尝试用植树问题的方法来解决实际生活中的简单问题,培养学生解决实际问题的能力。 三、编排特点 (1)题材更为丰富。 与原实验教材相比,本次修订后的“植树问题”新增了一些生活中的“植树问题”。如例3探讨在一条封闭曲线上植树的问题。另外,教材在“做一做”和练习中增加了 “每两棵梧桐树中间栽一棵银杏树”“马拉松比赛设置饮水点”“项链上的水晶”等实际问题,一方面激发学生的学习兴趣和探究欲望,另一方面帮助学生多角度、有效地体会和运用植树问题的数学思想和方法。 (2)突出线段图的教学,帮助学生直观理解植树问题的数学模型。 27 在“植树问题”中最重要的数学思想就是模型思想,而如何让学生理解从实际问题中抽象出数学模型的过程是教学“植树问题”的难点。为了突破这一难点,教材突出了线段图的教学,通过几何直观帮助学生理解“植树问题”的数学模型。例1先画出形象的线段图,然后抽象成线段图表示两端都栽的情况,例2通过迁移呈现出两端都不栽的线段图, “做一做”的第2题,让学生通过迁移画出一端栽另一端不栽的线段图,最后例3让学生理解在封闭曲线上植树的线段图的画法以及沟通它和一条线段上植树中的一端栽另一端不栽的联系。教材通过突出线段图的教学,帮助学生直观理解不同情况下植树棵树、分割点和间隔数之间的关系,由此理解和建立植树问题的数学模型。 四、具体编排 1.例1:一条线段上植树(两端都栽)。 植树问题教学的重点是解决点和间隔的关系,建立相应的模型。但是当数据比较大时,不利于学生发现规律,所以教材编排上体现了化繁为简和建模的思想。 例1是关于一条线段上的植树问题并且两端都要栽树的情况,让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历解决问题的过程。 (1)渗透化繁为简的思想,经历解决问题的过程。 通过学生的话“100m太长了,可以先用简单的数试试”渗透化繁为简的解决问题的方法,接下来的编排渗透了“猜测—探索—归纳—应用”的解决问题的策略。 (2)重点培养学生借助线段图建立数学模型的能力。 教材呈现学生用画示意图或线段图的方法帮助思考,通过观察两端都栽树的示意图或线段图,把分割点和栽树的棵树一一对应起来, 27 发现并初步总结栽树的棵数与间隔数之间的关系。再让学生在30m、35m上加以验证,从而建立起一条线段两端都栽这类植树问题的数学模型。从而找到解决问题的方法。 2.例2:一条线段上植树(两端都不栽)。 例2是关于一条线段的植树问题的另一种情况,即两端都不栽树的情况。教材继续通过画线段图的方法帮助学生分析、理解,找出一般规律来解决问题,突出学生的迁移能力培养。 有了例1的基础,可以放手让学生独立思考。学生自然会想到借助线段图来分析,教材呈现学生画线段图进行分析,发现当两端都不栽树时,植树的棵数比间隔数少1,然后利用发现的规律解决例题的问题。 一端栽另一端不栽的情况放在“做一做”第2题让学生自己探究。通过画线段图,可以与例1、例2的对比来获得对这一基本模型的理解,同时运用发现的规律解决要求的问题。 3.例3:封闭曲线上植树。 (1) 突出画图的策略。 例3是在一条首尾封闭的曲线上植树的问题。编排思路和例1相同,继续渗透化繁为简的思想和画图的策略。借助图示探索规律,建立模型。 (2)注重模型的对比与沟通。 通过小精灵的问题“如果把圆拉直成线段,你能发现什么?”启发学生联系已有的知识找出这种植树问题的规律,即栽树的棵树正好等于间隔数,也就相当于一条线段上植树的一端栽另一端不栽的情况,渗透转化的数学思想。 五、教学建议 27 1.经历建模的过程,感悟思想方法。 “数学广角”的教学目的主要是让学生体验知识的形成过程和感悟数学思想方法。具体到本单元,教学时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。比如例1的教学,可以让学生经历猜想、实验、归纳、推理的过程,渗透简单的化归、数形结合、一一对应、模型、推理等数学思想,激发学生学习数学的兴趣。 2.突出画图(线段图)的策略。 几何直观是课标的核心概念之一,帮助学生养成画图的习惯是非常重要的。本单元通过画示意图或线段图来解决植树问题,可以更直观理解、更好地发现规律,建立模型,找出解决问题的方法。 另外,学生在学习中容易将两端都栽、一端栽另一端不栽、两端都不栽三种情况弄混。事实上,学生不用记每种模型的结论,遇到问题,只要画个线段图,问题就迎刃而解了,从而体会到画图策略的价值。 第八单元 总复习 教材分析 本单元复习本册教材的主要内容,包括小数乘法、位置、小数除法、可能性、简易方程、多边形的面积、植树问题。通过总复习,把本学期所学的内容进一步系统化,使学生对所学的概念、计算法则等得到进一步巩固,提高学生解决问题的能力。 学情分析 复习课不只是把知识重现一次,最主要的还是要让学生通 27 过复习查缺补漏,获得自身能力的提高。五年级的学生已经养成了自主学习的习惯,所以课前可以先让学生自主整理本学期所学的知识,初步形成知识网。在复习时再引导学生联系相关的数学知识,使知识系统化,有利于学生理解和记忆。 教学目标 知识技能:使学生更加全面、深入地理解和掌握所学的知识。 数学思考:通过进一步构建学生的知识体系,提高学生解决问题的能力。 问题解决:通过系统化知识,培养学生应用知识的能力。 情感态度:使学生感受数学与现实生活的联系,并养成良好的学习习惯和应用知识解决问题的习惯。 教学重点:扎实掌握所学知识 。 教学难点:提高答题的正确率。 课时安排4课时 1.小数乘、除法复习………………………………1课时 2.位置复习…………………………………………1课时 3.简易方程复习……………………………………1课时 4.多边形的面积复习………………………………1课时 27查看更多