人教版初一数学上册知识点归纳整理大全,精品2套

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

人教版初一数学上册知识点归纳整理大全,精品2套

人教版初一数学上册知识点归纳整理大全,精品 2 套 人教版七年级数学上册期末总复习 第一章有理数 1.有理数: (1)凡能写成 )0pq,p(p q 为整数且 形式的数,都是有理数,整数和分数统称有理数. 注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数; (2)有理数的分类: ①          负分数 负整数负有理数 零 正分数 正整数正有理数 有理数 ②            负分数 正分数分数 负整数 零 正整数 整数 有理数 (3)注意:有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的 数分成四个区域,这四个区域的数也有自己的特性; (4)自然数 0 和正整数; a>0  a 是正数; a<0  a 是负数; a≥0  a 是正数或 0  a 是非负数; a≤ 0  a 是负数或 0  a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还 是 0; (2)注意: a-b+c 的相反数是-a+b-c;a-b 的相反数是 b-a;a+b 的相反数是-a-b; (3)相反数的和为 0  a+b=0  a、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 w w w .x k b 1.c o m 4.绝对值: (1)正数的绝对值等于它本身,0 的绝对值是 0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:        )0a(a )0a(0 )0a(a a 或      )0( )0( aa aaa ; (3) 0a1a a  ; 0a1a a  ; (4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小: (1)正数永远比 0 大,负数永远比 0 小; (2)正数大于一切负数; (3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。 6.倒数:乘积为 1 的两个数互为倒数; 注意:0 没有倒数; 若 ab=1 a、b 互为倒数; 若 ab=-1 a、b 互为负倒数. 等于本身的数汇总: 相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和 0 平方等于本身的数:0,1 立方等于本身的数:0,1,-1. 7. 有理数加法法则:X|k |b| 1 . c|o |m (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b). 10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .(简便运算) 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, 无意义即 0 a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义:(1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2 是重要的非负数,即 a2≥0;若 a2+|b|=0  a=0,b=0; (4)据规律            10010 11 01.01.0 2 2 2 底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于 10 的数记成 a×10n 的形式,其中 a 是整数数位只有一位的数, 这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。 18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能 用于证明.常用于填空,选择。 第二章 整式的加减 1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。 2.单项式的系数与次数:单项式中的数字因数,称单项式的系数; 单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. X k b 1 . c o m 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多 项式的项;多项式里,次数最高项的次数叫多项式的次数; 5.    多项式 单项式整式 . 6.同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则: 系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号. 9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并) 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到 小)排列起来,叫做按这个字母的升幂排列(或降幂排列). 第三章 一元一次方程 1.等式:用“=”号连接而成的式子叫等式. 2.等式的性质: 等式性质 1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质 2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3.方程:含未知数的等式,叫方程. 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质 1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是 1,并且含未知数项的系数不 是零的整式方程是一元一次方程. 7.一元一次方程的标准形式: ax+b=0(x 是未知数,a、b 是已知数,且 a≠0). 8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质 去 分母----------同乘(不漏乘)最简公分母 去 括号----------注意符号变化 移 项----------变号(留下靠前)       合并同类项--------合并后符号 w w w .x k b 1.c o m 系数化为 1---------除前面 10.列一元一次方程解应用题: (1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合, 为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出 未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有 关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取 得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的 代数式是获得方程的基础. 11.列方程解应用题的常用公式: (1)行程问题: 距离=速度·时间 时间 距离速度  速度 距离时间  ; (2)工程问题: 工作量=工效·工时 工时 工作量工效  工效 工作量工时  ; 工程问题常用等量关系: 先做的+后做的=完成量 w w w .x k b 1.c o m (3)顺水逆水问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程 (4)商品利润问题: 售价=定价 10 几折 , %100 成本 成本售价利润率 ; 利润问题常用等量关系: 售价-进价=利润 (5)配套问题: (6)分配问题 第四章 图形初步认识 (一)多姿多彩的图形 立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等. 主(正)视图---------从正面看 2、几何体的三视图 侧(左、右)视图-----从左(右)边看 俯视图---------------从上面看 (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型. 3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的. (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. (2)点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念 图形 直线 射线 线段 端点个数 无 一个 两个 表示法 直线 a 直线 AB(BA) 射线 AB 线段 a 线段 AB(BA) 作法叙述 作直线 AB; 作直线 a 作射线 AB 作线段 a; 作线段 AB; 连接 AB 延长叙述 不能延长 反 向 延 长 射 线 AB 延长线段 AB; 反向延长线段 BA 2、直线的性质 经过两点有一条直线,并且只有一条直线. 简单地:两点确定一条直线. w w w .x k b 1.c o m 3、画一条线段等于已知线段 (1)度量法 (2)用尺规作图法 4、线段的大小比较方法 (1)度量法 (2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点. 图形: A M B 符号:若点 M 是线段 AB 的中点,则 AM=BM=AB,AB=2AM=2BM. 6、线段的性质 两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离 连接两点的线段长度叫做两点的距离. 8、点与直线的位置关系 (1)点在直线上 (2)点在直线外. (三)角 1、角:由公共端点的两条射线所组成的图形叫做角. 2、角的表示法(四种): 3、角的度量单位及换算 4、角的分类 ∠β 锐角 直角 钝角 平角 周角 范围 0<∠β< 90° ∠β =90° 90°<∠β <180° ∠β =180° ∠β =360° 5、角的比较方法 (1)度量法 (2)叠合法 6、角的和、差、倍、分及其近似值 7、画一个角等于已知角 (1)借助三角尺能画出 15°的倍数的角,在 0~180°之间共能画出 11 个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 8、角的平线线 定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:w w w .x k b 1.c o m 9、互余、互补 (1)若∠1+∠2=90°,则∠1 与∠2 互为余角.其中∠1 是∠2 的余角,∠2 是∠1 的余角. (2)若∠1+∠2=180°,则∠1 与∠2 互为补角.其中∠1 是∠2 的补角,∠2 是∠1 的补角. (3)余(补)角的性质:等角的补(余)角相等. 10、方向角 (1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向 初一上册数学知识点归纳整理 第一章有理数 (一)正负数 1.正数:大于 0 的数。 2.负数:小于 0 的数。 3.0 即不是正数也不是负数。 4.正数大于 0,负数小于 0,正数大于负数。 (二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写 成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点 后的数字是无限不循环的。如:π) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示 数 0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位 长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0 的相反数还是 0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0 的绝对值是 0,两个负 数,绝对值大的反而小。 (四)有理数的加减法 1.先定符号,再算绝对值。 2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加 数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得 0。一个数同 0 相加减,仍得这个数。 3.加法交换律:a+b=b+a 两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数 相加,和不变。 5.a-b=a+(-b)减去一个数,等于加这个数的相反数。 (五)有理数乘法(先定积的符号,再定积的大小) 1.同号得正,异号得负,并把绝对值相乘。任何数同 0 相乘,都得 0。 2.乘积是 1 的两个数互为倒数。 3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc) 5.乘法分配律:a(b+c)=ab+ac (六)有理数除法 1.先将除法化成乘法,然后定符号,最后求结果。 2.除以一个不等于 0 的数,等于乘这个数的倒数。 3.两数相除,同号得正,异号得负,并把绝对值相除,0 除以任何一个不等于 0 的数,都 得 0。 (七)乘方 1.求 n 个相同因数的积的运算,叫做乘方。写作 an。(乘方的结果叫幂,a 叫底数,n 叫指 数) 2.负数的奇数次幂是负数,负数的偶次幂是正数;0 的任何正整数次幂都是 0。 3.同底数幂相乘,底不变,指数相加。 4.同底数幂相除,底不变,指数相减。 (八)有理数的加减乘除混合运算法则 1.先乘方,再乘除,最后加减。 2.同级运算,从左到右进行。 3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 (九)科学记数法、近似数、有效数字。 第二章整式(一)整式 1.整式:单项式和多项式的统称叫整式。 2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。 3.系数;一个单项式中,数字因数叫做这个单项式的系数。 4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 5.多项式:几个单项式的和叫做多项式。 6.项:组成多项式的每个单项式叫做多项式的项。 7.常数项:不含字母的项叫做常数项。 8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。 9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 (二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。 1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果 括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数 是负数,去括号后原括号内各项的符号与原来的符号相反。 2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得 项的系数是合并前各同类项的系数的和,且字母部分不变 整理了知识点,我们来看看相关的练习题吧。根据做题的情况分析有哪些知识点是自己还没 有掌握的。 1,从数轴上看,0 是() A,最小整数 B,最大的负数 C,最小的有理数 D 最小的非负数 2,一个数的相反数小于它本身,这个数是() A,非负数 B,正数 C,0D,负数 3,冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是 () A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃ 4,下列说法正确的有() A,正数和负数统称为有理数 B,有理数是指整数、分数、正有理数、负有理数和 0 五类 C, 一个有理数不是整数就是分数 D,整数包括正整数和负整数 5,若 a、b 为有理数,a>0,b<0,且|a|<|b|,那么下列说法不正确的是() A,若将数 a、b 在数轴上表示出来,则 a 在原点右侧,b 在原点左侧。 B,因正数大于一切负数,所以 a>b。 C,若将数 a、b 在数轴上表示出来,则数 a 与原点的距离比较 b 与原点的距离小。 D,在数轴上,表示 a,|a|,b 的点从左到右依次为 a,b,|a| 6,在下列代数式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3 中,多项式有 ()A.2 个 B.3 个 C.4 个 D5 个 7,多项式-23m2-n2 是()A.二次二项式 B.三次二项式 C.四次二项式 D 五次二项式 8,下列说法正确的是() A.3x2―2x+5 的项是 3x2,2x,5 B.(3/x)-(3/y)与 2x2―2xy-5 都是多项式 C.多项式-2x2+4xy 的次数是3 D 一个多项式的次数是 6,则这个多项式中只有一项的次数是 6 9,下列说法正确的是() A.整式 abc 没有系数 B.(x/2)+(y/3)+(z/4)不是整式 C.-2 不是整式 D.整式 2x+1 是一次二项式 10,下列代数式中,不是整式的是() A、-3x2 B、(5a-4b)/7 C、(3a+2)/5x D、-2005 参考答案 1——5 DBCCD 6——10 BABDC
查看更多

相关文章

您可能关注的文档