- 2021-11-12 发布 |
- 37.5 KB |
- 22页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020九年级数学上册 第24章 圆单元测试卷(含解析)(新版)新人教版
第24章 圆 考试时间:120分钟;满分:150分 学校:___________姓名:___________班级:___________考号:___________ 题号 一 二 三 总分 得分 评卷人 得 分 一.选择题(共10小题,满分40分,每小题4分) 1.(4分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( ) A.2cm B.4cm C.2cm或4cm D.2cm或4cm 2.(4分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是( ) A.25° B.27.5° C.30° D.35° 3.(4分)已知⊙O的半径为5cm,直线1上有一点P,OP=5cm,则直线1与⊙O的位置关系为( ) A.相交 B.相离 C.相切 D.相交或相切 4.(4分)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于( ) A.27° B.32° C.36° D.54° 5.(4分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2 22 成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( ) A. B. C.34 D.10 6.(4分)某同学以一个边长为1的正六边形的三个顶点为圆心,边长为半径,向外画了三段圆弧,设计了如图所示的图案.则图案外围轮廓的周长为( ) A.2π B.3π C.4π D.6π 7.(4分)若一个正多边形的中心角等于其内角,则这个正多边形的边数为( ) A.3 B.4 C.5 D.6 8.(4分)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( ) A.2cm B.cm C.cm D.1cm 9.(4分)如图,已知圆O的半径为a,点A,B,C均在圆O上,且OB⊥AC,则图中阴影部分的面积是( ) 22 A.(+π)a2 B.πa2 C.(+1)a2 D.πa2 10.(4分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为( ) A.π﹣6 B.π C.π﹣3 D.+π 评卷人 得 分 二.填空题(共4小题,满分20分,每小题5分) 11.(5分)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是 cm. 12.(5分)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C= 度. 13.(5分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为 . 22 14.(5分)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为 . 评卷人 得 分 三.解答题(共9小题,满分90分) 15.(8分)如图,AB、AC是⊙O的两条弦,且AB=AC.求证:∠1=∠2. 16.(8分)如图,正三角形ABC内接于⊙O,若AB=cm,求⊙O的半径. 17.(8分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积. 22 证明:S矩形ABCD=S1+S2+S3=2,S4= ,S5= ,S6= + ,S阴影=S1+S6=S1+S2+S3= . 18.(8分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π). 19.(10分)已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED. (1)求证:ED=EC; (2)若CD=3,EC=2,求AB的长. 20.(10分)如图,AB是⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D的切线交AC的延长线于点E. 求证:(1)DE⊥AE; (2)AE+CE=AB. 22 21.(12分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C. (1)求证:∠CBP=∠ADB. (2)若OA=2,AB=1,求线段BP的长. 22.(12分)如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N. (1)求证:AE=FB; (2)在不添加任何辅助线的情况下,请直接写出所有与△ABM全等的三角形. 23.(14分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AB=2,AC=. (1)求∠A的度数. (2)求弧CBD的长. (3)求弓形CBD的面积. 22 2018年秋 九年级上学期 第24章 圆 单元测试卷 参考答案与试题解析 一.选择题(共10小题,满分40分,每小题4分) 1. 【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论. 【解答】解:连接AC,AO, ∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm, ∴AM=AB=×8=4cm,OD=OC=5cm, 当C点位置如图1所示时, ∵OA=5cm,AM=4cm,CD⊥AB, ∴OM===3cm, ∴CM=OC+OM=5+3=8cm, ∴AC===4cm; 当C点位置如图2所示时,同理可得OM=3cm, ∵OC=5cm, ∴MC=5﹣3=2cm, 在Rt△AMC中,AC===2cm. 故选:C. 【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 2. 【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案. 22 【解答】解:∵∠A=60°,∠ADC=85°, ∴∠B=85°﹣60°=25°,∠CDO=95°, ∴∠AOC=2∠B=50°, ∴∠C=180°﹣95°﹣50°=35° 故选:D. 【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键. 3. 【分析】根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.分OP垂直于直线l,OP不垂直直线l两种情况讨论. 【解答】解:当OP垂直于直线l时,即圆心O到直线l的距离d=5cm=r,⊙O与l相切; 当OP不垂直于直线l时,即圆心O到直线l的距离d<5cm=r,⊙O与直线l相交. 故直线l与⊙O的位置关系是相切或相交. 故选:D. 【点评】本题考查直线与圆的位置关系.解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定. 4. 【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案. 【解答】解:∵PA切⊙O于点A, ∴∠OAP=90°, ∵∠P=36°, ∴∠AOP=54°, ∴∠B=27°. 故选:A. 【点评】此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键. 22 5. 【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论. 【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值. ∵DE=4,四边形DEFG为矩形, ∴GF=DE,MN=EF, ∴MP=FN=DE=2, ∴NP=MN﹣MP=EF﹣MP=1, ∴PF2+PG2=2PN2+2FN2=2×12+2×22=10. 故选:D. 【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三边关系,利用三角形三边关系找出PN的最小值是解题的关键. 6. 【分析】图案外围轮廓的周长=三条弧长之和,利用函数公式计算即可; 【解答】解:正六边形的内角==120°, ∴扇形的圆心角=360°﹣120°=240°, ∴图案外围轮廓的周长=3×=4π, 故选:C. 【点评】本题考查正多边形与圆,弧长公式等知识,解题的关键是求出扇形的圆心角,记住弧长公式:l=. 7. 22 【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案. 【解答】解:360°÷n=. 故这个正多边形的边数为4. 故选:B. 【点评】本题考查的是正多边形内角、外角和中心角的知识,掌握中心角的计算公式是解题的关键. 8. 【分析】根据正六边形的内角度数可得出∠1=30°,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解. 【解答】解:∵正六边形的任一内角为120°, ∴∠1=30°(如图), ∴a=2cos∠1=, ∴a=2. 故选:A. 【点评】本题考查了正多边形以及解直角三角形,牢记正多边形的内角度数是解题的关键. 9. 【分析】根据阴影部分的面积=半圆面积+△ABC的面积,计算即可; 【解答】解:如图连接OB. ∵OA=OC,OB⊥AC, 22 ∴S△ABC=a2,S半圆=πa2, ∴S阴=a2+πa2=(+1)a2, 故选:C. 【点评】本题考查扇形的面积公式、三角形的面积公式等知识,解题的关键是学会用分割法求阴影部分面积; 10. 【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可. 【解答】解:∵AB=5,AC=3,BC=4, ∴△ABC为直角三角形, 由题意得,△AED的面积=△ABC的面积, 由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积, ∴阴影部分的面积=扇形ADB的面积=, 故选:B. 【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键. 二.填空题(共4小题,满分20分,每小题5分) 11. 【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解. 【解答】解:①当弦AB和CD在圆心同侧时,如图, ∵AB=16cm,CD=12cm, 22 ∴AE=8cm,CF=6cm, ∵OA=OC=10cm, ∴EO=6cm,OF=8cm, ∴EF=OF﹣OE=2cm; ②当弦AB和CD在圆心异侧时,如图, ∵AB=16cm,CD=12cm, ∴AF=8cm,CE=6cm, ∵OA=OC=10cm, ∴OF=6cm,OE=8cm, ∴EF=OF+OE=14cm. ∴AB与CD之间的距离为14cm或2cm. 故答案为:2或14. 【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解. 12. 【分析】利用圆周角定理得到∠ADB=90°,再根据切线的性质得∠ABC=90°,然后根据等腰三角形的判定方法得到△ABC为等腰直角三角形,从而得到∠C的度数. 【解答】解:∵AB为直径, ∴∠ADB=90°, ∵BC为切线, ∴AB⊥BC, ∴∠ABC=90°, 22 ∵AD=CD, ∴△ABC为等腰直角三角形, ∴∠C=45°. 故答案为45. 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰直角三角形的判定与性质. 13. 【分析】根据五边形的内角和公式求出∠EAB,根据等腰三角形的性质,三角形外角的性质计算即可. 【解答】解:∵五边形ABCDE是正五边形, ∴∠EAB=∠ABC==108°, ∵BA=BC, ∴∠BAC=∠BCA=36°, 同理∠ABE=36°, ∴∠AFE=∠ABF+∠BAF=36°+36°=72°, 故答案为:72°. 【点评】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键 14. 【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论. 【解答】解:连接OE、AE, ∵AB是⊙O的直径, ∴∠AEB=90°, ∵四边形ABCD是平行四边形, ∴AB=CD=4,∠B=∠D=30°, 22 ∴AE=AB=2,BE==2, ∵OA=OB=OE, ∴∠B=∠OEB=30°, ∴∠BOE=120°, ∴S阴影=S扇形OBE﹣S△BOE, =﹣×, =﹣, =﹣, 故答案为:﹣. 【点评】本题考查了扇形的面积计算、平行四边形的性质,直角三角形中30度角等知识点,能求出扇形OBE的面积和△ABE的面积是解此题的关键. 三.解答题(共9小题,满分90分) 15. 【分析】已知AB=AC,又OC=OB,OA=OA,则△AOB≌△AOC,根据全等三角形的性质知,∠1=∠2. 【解答】证明:连接OB、OC. ∵AB=AC,OC=OB,OA=OA, ∴△AOB≌△AOC(SSS). ∴∠1=∠2. 22 【点评】本题主要考查了全等三角形的判定和性质,利用圆中半径相等的隐含条件,获得全等的条件,从而利用全等的性质解决问题. 16. 【分析】利用等边三角形的性质得出点O既是三角形内心也是外心,进而求出∠OBD=30°,BD=CD,再利用锐角函数关系得出BO即可. 【解答】解:过点O作OD⊥BC于点D,连接BO, ∵正三角形ABC内接于⊙O, ∴点O即是三角形内心也是外心, ∴∠OBD=30°,BD=CD=BC=AB=, ∴cos30°===, 解得:BO=2, 即⊙O的半径为2cm. 【点评】此题主要考查了正多边形和圆,利用正多边形内外心的特殊关系得出∠OBD=30°,BD=CD是解题关键. 17. 【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题; 【解答】证明:由题意:S矩形ABCD=S1+S2+S3=2, S4=S2,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S2+S3=2. 故答案为:S2,S3,S4,S5,2. 【点评】本题考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 22 18. 【分析】连接OD,求出四边形ABCD是平行四边形,关键平行四边形的性质求出DC长,再根据梯形面积公式和扇形面积公式求出即可. 【解答】解:连接OD, ∵OA=OD,∠A=45°, ∴∠A=∠ADO=45°, ∴∠DOB=90°,即OD⊥AB, ∵BC∥AD,CD∥AB, ∴四边形ABCD是平行四边形, ∴CD=AB=2 ∴S梯形OBCD=, ∴图中阴影部分的面积S=S梯形OBCD﹣S扇形OBD=﹣=﹣. 【点评】本题考查了平行四边形的性质和判定,扇形的面积计算等知识点,能分别求出梯形OBCD的面积和扇形DOB的面积是解此题的关键. 19. 【分析】(1)由圆内接四边形的性质知∠B=∠EDC,根据AB=AC即∠B=∠C得∠EDC=∠C,即可得证; (2)连接AE,得AE⊥BC,结合AB=AC知BC=2EC=4,证△ABC∽△EDC即可得. 【解答】解:(1)∵∠EDC+∠EDA=180°、∠B+∠EDA=180°, ∴∠B=∠EDC, 又∵AB=AC, ∴∠B=∠C, ∴∠EDC=∠C, ∴ED=EC; 22 (2)连接AE, ∵AB是直径, ∴AE⊥BC, 又∵AB=AC, ∴BC=2EC=4, ∵∠B=∠EDC、∠C=∠C, ∴△ABC∽△EDC, ∴AB:EC=BC:CD, 又∵EC=2、BC=4、CD=3, ∴AB=8. 【点评】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形的判定与性质及等腰三角形的性质. 20. 【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA,利用“内错角相等,两直线平行”可得出AE∥OD,结合切线的性质即可证出DE⊥AE; (2)过点D作DM⊥AB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、∠AED=∠AMD=90°即可证出△DAE≌△DAM(SAS),根据全等三角形的性质可得出AE=AM,由∠EAD=∠MAD可得出,进而可得出CD=BD,结合DE=DM可证出Rt△DEC≌Rt△DMB(HL),根据全等三角形的性质可得出CE=BM,结合AB=AM+BM即可证出AE+CE=AB. 【解答】证明:(1)连接OD,如图1所示. ∵OA=OD,AD平分∠BAC, ∴∠OAD=∠ODA,∠CAD=∠OAD, ∴∠CAD=∠ODA, 22 ∴AE∥OD. ∵DE是⊙O的切线, ∴∠ODE=90°, ∴OD⊥DE, ∴DE⊥AE. (2)过点D作DM⊥AB于点M,连接CD、DB,如图2所示. ∵AD平分∠BAC,DE⊥AE,DM⊥AB, ∴DE=DM. 在△DAE和△DAM中,, ∴△DAE≌△DAM(SAS), ∴AE=AM. ∵∠EAD=∠MAD, ∴, ∴CD=BD. 在Rt△DEC和Rt△DMB中,, ∴Rt△DEC≌Rt△DMB(HL), ∴CE=BM, ∴AE+CE=AM+BM=AB. 22 【点评】本题考查了全等三角形的判定与性质、切线的性质、角平分线的性质、等腰三角形的性质、平行线的判定与性质以及圆周角定理,解题的关键是:(1)利用平行线的判定定理找出AE∥OD;(2)利用全等三角形的性质找出AE=AM、CE=BM. 21. 【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明; (2)证明△AOP∽△ABD,然后利用相似比求BP的长. 【解答】(1)证明:连接OB,如图, ∵AD是⊙O的直径, ∴∠ABD=90°, ∴∠A+∠ADB=90°, ∵BC为切线, ∴OB⊥BC, ∴∠OBC=90°, ∴∠OBA+∠CBP=90°, 而OA=OB, ∴∠A=∠OBA, ∴∠CBP=∠ADB; (2)解:∵OP⊥AD, ∴∠POA=90°, ∴∠P+∠A=90°, ∴∠P=∠D, ∴△AOP∽△ABD, 22 ∴,即, ∴BP=7. 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质. 22. 【分析】(1)证明△AFE与△BAF全等,利用全等三角形的性质证明即可; (2)先证明△ABM≌△DEN,同理得出△ABM≌△FEM≌△CBN, 【解答】证明:(1)∵正六边形ABCDEF, ∴AF=EF=AB,∠AFE=∠FAB, 在△AFE与△BAF中, , ∴△AFE≌△BAF(SAS), ∴AE=FB; (2)与△ABM全等的三角形有△DEN,△FEM,△CBN; ∵六边形ABCDEF是正六边形, ∴AB=DE,∠BAF=120°, ∴∠ABM=30°, ∴∠BAM=90°, 同理∠DEN=30°,∠EDN=90°, ∴∠ABM=∠DEN,∠BAM=∠EDN, 在△ABM和△DEN中, 22 , ∴△ABM≌△DEN(ASA). 同理利用ASA证明△FEM≌△ABM,△CBN≌△ABM. 【点评】本题考查了正多边形和圆以及全等三角形的判定,掌握正多边形的性质和全等三角形的判定是解题的关键. 23. 【分析】(1)根据题意可以求得BC的长和∠ACB的度数,从而可以求得∠A的度数; (2)根据(1)中的结果可以求得∠COD的度数,从而可以求得弧CBD的长; (3)根据图形可知,弓形CBD的面积等于扇形CBD与△COD的面积之差,从而可以解答本题. 【解答】解:(1)连接BC,BD, ∵AB是直径, ∴∠ACB=90°, ∵AB=2, AC=, ∴BC=1, ∴∠A=30°; (2)连接OC,OD, ∵CD⊥AB、AB是直径, ∴∠BOC=2∠A=60°, ∴∠COD=120°, ∴弧CBD的长是:; (3)∵OC=OA=1,∠BOC=60°, ∴CP=OC•sin60°=1×=,OP=OC•cos60°=, ∴CD=2CP=, 22 ∴弓形CBD的面积是:. 【点评】本题考查扇形面积的计算、垂径定理、圆周角定理、弧长计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 22查看更多