北师大版九年级数学(下册)第一章直角三角形的边角关系

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

北师大版九年级数学(下册)第一章直角三角形的边角关系

北师大版九年级数学(下册)‎ 第一章 直角三角形的边角关系 ‎1.3三角函数的计算 课时练习 ‎1.求整数度数的锐角三角函数值:例如,求sin 37°时,先按开机键     再依次按键     、     、     、     即可,显示结果为0.601 815 023.‎ ‎2.求非整数度数的锐角三角函数值:例如,求tan 36°24’31”时,先按开机键,再依次按     、     、     、     、     、     、     、     、     、     、=,即可得到结果.‎ ‎3.用计算器求tan 75°的值(结果精确到0.001)为(  )‎ A.3.732‎ B.2.747‎ C.0.965‎ D.3.812‎ ‎4.用计算器求cos 65°7’20”的值的按键顺序是                   ‎ ‎5.用计算器求下列各式的值(结果精确到0.000 1):‎ ‎(1)sin 75°=     ;‎ ‎(2)tan 17°18’=     ;‎ ‎(3)cos 59°21’=     ;‎ ‎(4)sin 40°+cos 35°+tan 54°=     ;‎ ‎(5)cos 38°-tan 26°+sin 57°=     .‎ ‎6.如图1-3-1所示,某超市(大型商场)在一楼至二楼之间安装有电梯,天花板(一楼的楼顶)与地面平行,请你根据图中数据计算回答:小明身高1.85 m,他乘电梯会有碰头的危险吗?‎ ‎(sin 28°≈0.47,tan 28°≈0.53)‎ 图1-3-1‎ ‎7.用计算器求cos 45.32°,其值为(结果精确到0.000 1)(  )‎ A.0.713 5‎ B.0.703 1‎ C.6.326‎ D.0.707 0‎ ‎8.用计算器计算(结果精确到0.000 1):‎ ‎(1)tan 80°30’=     ; ‎ ‎(2)cos 32°42’=     ; ‎ ‎(3)sin 14°+cos 18°49’+tan 46°27’28”=     .‎ ‎9.小明在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为多少米?(结果保留整数,参考数据:sin 20°≈0.342 0,sin 70°≈0.939 7,tan 20°≈0.364 0,tan 70°≈2.747 5)‎ 图1-3-2‎ ‎10.如图1-3-3所示,一个最大能张开54°的圆规,若两脚长均为15 cm,则该圆规所画的圆中最大的直径是多少?(sin 27°≈0.454 0,精确到0.01 cm)‎ 图1-3-3‎ 参考答案 ‎1.ON   sin   3   7  =‎ ‎2.tan   3   6      2   4      3   1    ‎ ‎3.A ‎4.略.‎ ‎5.(1)0.965 9‎ ‎(2)0.3115‎ ‎(3)0.5098‎ ‎(4)2.8383‎ ‎(5)1.1389‎ ‎6.解:∵一楼与二楼平行,∴∠CAD=28°.‎ 在Rt△ACD中,‎ CD=AC·tan∠CAD≈4×0.53=2.12(m).‎ ‎∵2.12>1.85,‎ ‎∴小明乘电梯不会有碰头的危险.‎ ‎7.B ‎8.(1)5.9758‎ ‎(2)0.8415‎ ‎(3)2.2407‎ ‎9.解:在Rt△ABC中,AB=500米,∠BAC=20°,‎ ‎∵=tan 20°,‎ ‎∴BC=ABtan 20°≈500×0.364 0=182(米).‎ ‎10.解:作AD⊥BC于D,则∠BAD=27°,‎ ‎∵sin∠BAD=,‎ ‎∴BD=ABsin 27°=15×sin 27°≈15×0.454 0=6.81(cm).‎ ‎∴BC=2BD≈2×6.81=13.62(cm).‎ ‎∴直径=2BC≈2×13.62=27.24(cm).‎ 即该圆规所画的圆中最大的直径约是27.24 cm.‎
查看更多

相关文章

您可能关注的文档