- 2021-11-11 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
九年级上册数学圆章节知识点总结
与圆相关的基本知识和计算 一、知识梳理: (一):圆及圆的有关概念 1. 圆:到顶点的距离等于定长的点的集合叫做圆; 2. 弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧; 3. 弦:连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径,它是圆的最长的弦; 4. 等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧; 5. 圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角; (二)圆的有关性质: 1. 对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线; 2. 垂径定理及其推论: (1)、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧; (2)、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧; 3.圆心角、弧、弦之间的关系 (1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; (2)推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等。在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等。 4.圆周角与圆心角的关系 (1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; (2)推论:半圆(或直径)所对的圆周角是直角,的圆周角所对的弦是直径; 5.圆内接四边形对角互补。 (三) 点与圆的位置关系 1、点和圆的位置关系 如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系. (1)d>r点在圆外;(2)d=r点在圆上;(3)d<r点在圆内. 2、确定圆的条件:不在同一直线上的三个点确定一个圆. (三) 直线与圆的位置关系 1、(1)直线与圆的位置关系有关概念 ①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线. ②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点. ③相离,当直线和圆没有公共点时,叫做直线和圆相离. (2)用数量关系判断直线与圆的位置关系 如果⊙O的半径为r,圆心O到直线l的距离为d,那么: (1)直线l和⊙O相交d<r(如图(1)所示); (2)直线l和⊙O相切d=r(如图(2)所示); (3)直线l和⊙O相离d>r(如图(3)所示). 2、切线 (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. (2)切线的性质:圆的切线垂直于过切点的半径. (3)切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长. (4)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角. (五)三角形的外接圆和内切圆 1、三角形的外接圆 (1)定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆. 三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形. (2)三角形外心的性质: ①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等. ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合. 2、三角形的内切圆与三角形的内心 ①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形. ②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等. (六):圆的有关计算 (一)正多边形与圆 1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。 2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心;如果一个正n边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心; 3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方; 4、正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;正n边形的中心角等于外角等于; (二) 弧长与扇形面积 1、在半径为R的圆中,圆心角所对的弧长l=; 2、在半径为R的圆中,圆心角为的扇形面积=;半径为R,弧长为l的扇形面积为=; 3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2r,因此圆锥的侧面积为rl,圆锥的全面积为rl+r。查看更多