- 2021-11-10 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
九年级下册数学同步练习1-5 第1课时 抛物线形二次函数 湘教版
1.5 二次函数的应用 第1课时 抛物线形二次函数 1.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是( ) A.y=-2x2 B.y=2x2 C、 D 、 第1题 第2题 2、如图,铅球的出手点C距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为( ) A、 B、 C、 D、 3.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为( ) A、 B、 C、 D、 第3题 第4题 4、某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( ) A、4米 B、3米 C、2米 D、1米 5.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它[来源:Zxxk.Com] 的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为 第5题 第6题 第7题 第8题 6、如图,一小孩将一只皮球从 A处抛出去,它经过的路线是某个二次函数图像的一部分,如果他的出手处A距地面OA为1m,球路的最高点为B(8,9),则这个二次函数的表达式为 ,小孩将球抛出约 米。 7、如图,某中学教学楼前喷水池喷出的抛物线形水柱,其解析式为,则水柱的最大高度是 米。 8、如图是某公园一圆形喷水池,水流在各个方向沿形状相同的抛物线落下,建立如下图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处M(1,2.25),则该抛物的解析式为 。如果不考虑其他因素,那么水池的半径至少要 m,才能使喷出的水流不至落到池外。 9、如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米,现以O为原点米,OM所在的直线为x轴建立直角坐标系。 (1)直接写出点M的坐标及抛物线顶点P的坐标; (2)求这条抛物线的解析式; (3)若有搭建一个矩形的“支撑架”AD-DC-CB,使C,D点在抛物线上,A,B点在地面OM上,则这个“支撑架”总长的最大值是多少? [来源:学科网ZXXK] 10、杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看作一个点)的路线是抛物线的一部分,如图所示。 (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由。 [来源:Z。xx。k.Com] [来源:Zxxk.Com] 11、如图,小河上有一拱桥,拱桥及河道的截面轮廓有抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系。 (1)求抛物线的解析式;[来源:Z+xx+k.Com] (2)已知从某时刻开始的40个小时内,水面与河底ED的距离h(米)随时间(时)的变化满足函数关系:,且当顶点C到水面的距离不大于5米时,需禁止船只通行。请通过计算说明:在这一时段内,需多少小时禁止船只通过? 查看更多