- 2021-11-10 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学一轮复习知识点+题型专题讲义14 反比例函数(学生版)
专题 14 反比例函数 单元总结 【思维导图】 【知识要点】 知识点一 反比例函数的基础 反比例函数的概念:一般地,形如 ( 为常数, )的函数称为反比例函数。 表现形式: 还可以写成 和 xy= k 的形式 【注意】反比例函数 的自变量 x≠0,故函数图象与 x轴、y 轴无交点。 1.(2018·湖北襄阳七中初三月考)下列函数中,是反比例函数的是( ) A.y= B.3x+2y=0 C.xy- =0 D.y= 2.(2019·深圳市福田区外国语学校初三期中)下列函数是反比例函数的是( ) A. B. 2 3 xy C. D.y=-x+5 反比例函数解析式的特征: 1.等号左边是函数 ,等号右边是一个分式。分子是不为零的常数 (也叫做比例系数 ), 分母中含有自变量 ,且指数为 1. 2.比例系数 3.自变量 的取值为一切非零实数。 4.函数 的取值是一切非零实数。 考查题型一 根据反比例函数概念求参数值的方法 1.(2019·黑龙江八五八农场学校初二期末)函数的图象 是双曲线,则 m 的值是( ) A.-1 B.0 C.1 D.2 2.(2019·莱芜市寨里镇寨里中学初三期中)若函数 =(m+1)x|m|﹣2是反比例函数,则 = ( ) A.±1 B.±3 C.﹣1 D.1 待定系数法求反比例函数解析式的一般步骤(考点): 1)设反比例函数的解析式为 (k 为常数,k≠0) 2)把已知的一对 x,y 的值带入解析式,得到一个关于待定系数 k 的方程。 3)解方程求出 k 值 4)将 k 值代入所设解析式中。 考查题型二 待定系数法求反比例函数解析式 1.(2019·明光市鲁山中学初三月考)函数 的图象经过点 ,那么 等于( ) A. B. C. D. 2.(2019·芜湖市期中)下列各点中,在函数 y=- 图象上的是( ) A. 2, 4 B. C. D. 3.(2019·江苏初三月考)反比例函数 y= 图象经过 A(1,2),B(n,﹣2)两点,则 n= ( ) A.1 B.3 C.﹣1 D.﹣3 4.(2019·黑龙江中考模拟)若反比例函数 的图像经过点 ,则 的值为( ) A. B. C. D. 知识点二 反比例函数的图像和性质(基础) 图像的画法:描点法 1.列表(应以 O为中心,沿 O的两边分别取三对或以上互为相反的数) 2.描点(由小到大的顺序) 3.连线(从左到右光滑的曲线) 图像的特征: 1.函数的图像是双曲线. 2.图像的对称性: 图象关于原点对称,即若(a,b)在双曲线的一支上,则( , )在双曲线的另一支上. 图象关于直线 y = x 或 y= -x 对称,即若(a,b)在双曲线的一支上,则( , )和( , ) 在双曲线的另一支上. 3.k 的取值与函数图象弧度之间的关系: |k|越大,图象的弯曲度越小,曲线越平直.|k|越小,图象的弯曲度越大. 反比例函数的性质: 的取值 图像所在象限 函数的增减性 k>0 一、三象限 在每个象限内, 值随 的增大而减小 k>0 二、四象限 在每个象限内, 值随 的增大而增大 【注意】双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不 能一概而论 考查题型三 反比例函数图形特征与性质 1.(2018·安岳县期中)反比例函数 ( 为常数, )的图象位于( ) A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限 2.(2018·深圳市龙岗区百合外国语学校初三期中)已知反比例函数 1y x ,下列结论正确 的是( ) A. 值随着 值的增大而减小 B.图象是双曲线,是中心对称图形 C.当 >1时,0< <1 D.图象可能与坐标轴相交 3.(2015·浙江中考真题)若反比例函数 y= 的图象经过点(2,-1),则该反比例函数的图 象在( ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 4.(2019·秀屿区期末)当 k>0,x<0时,反比例函数 y= 的图象在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.(2019·太原市期末)已知反比例函数 ,下列结论中不正确的是( ) A.其图像分别位于第二、四象限 B.其图像关于原点对称 C.其图像经过点(2,-4) D.若点 1 1 2 2, , ,A x y B x y 都在图像上,且 1 2x x ,则 6.(2019·南宁市期中)若反比例函数 的图象在其所在的每一象限内, 随 的增大而 增大,则 A. B. C. D. 7.(2018·河南中考模拟)若点 A(﹣6,y1),B(﹣2,y2),C(3,y3)在反比例函数 y= (k为常数)的图象上,则 y1,y2,y3大小关系为( ) A.y1>y2 >y3 B.y2>y3>y1 C.y3>y2>y1 D.y3>y1>y2 8.(2019·芜湖市期中)若反比例函数 y= (k为常数)的图象在第一、三象限,则 k的 取值范围是( ) A.k<﹣ B.k< C.k>﹣ D.k> 知识点三 k 值的意义(难点) 1)设点 P(a,b)是双曲线上 任意一点,作 PA⊥x 轴于 A 点,PB⊥y 轴于 B 点,则矩形 PBOA 的面积是|k|(三角形 PAO 和三角形 PBO 的面积都是 ). 2)由双曲线的对称性可知,P关于原点的对称点 Q 也在双曲线上,作 QC⊥PA 的延长线于 C,则 有三角形 PQC 的面积为 2|k|. 考查题型四 计算反比例函数有关图形面积的方法 1.(2019·四平市期末)如图,A、B是曲线 上的点,经过 A、B两点向 x轴、 y轴作垂线段,若 ,则 S1+S2的值为( ) A.3 B.4 C.5 D.6 2.(2018·南京市期中)在反比例函数 的图象中,阴影部分的面积不等于 4的是( ) A. B. C. D. 3)直线 y=k1x 与双曲线 的关系: 当 k1•k2<0 时,两图象没有交点;当 k1•k2>0 时,两图象必有两个交点,且这两个交点关于原点 成中心对称. 考察题型五 一次函数与反比例函数综合 1.(2018·射阳县期末)关于 x的函数 y=kx+k和 y= (k≠0)在同一坐标系中的图象大致是 ( ) A. B. C. D. 2.(2018·自贡市期中)反比例函数 y= 和一次函数 y=kx-k 在同一坐标系中的图象大致是 ( ) A. B. C. D. 3.(2018邵阳市中考模拟)在同一直角坐标系中,函数 与 的 图象大致是( ) A. B. C. D. 4.(2018·湖北中考模拟)如图,已知 A(﹣4,n),B(2,﹣4)是一次函数 y=kx+b 的图 象与反比例函数 的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求直线 AB与 x轴的交点 C的坐标及△AOB的面积; (3)求方程 的解集(请直接写出答案). 知识点四 用反比例函数解决实际问题 解题步骤: 1.根据题意找等量关系。 2.列出方程,并注明自变量的取值范围。 3.解方程 4.写方程 考察题型六 数形结合 1.(2019·南昌市期中)蓄电池的电压为定值,使用此电源时,电流 I(A)是电阻 R(Ω) 的反比例函数,其图象如图所示. (1)求这个反比例函数的表达式; (2)当 R=10Ω时,求电流 I(A). 考察题型七 建模思想 1.(2016·广东中考真题)一司机驾驶汽车从甲地去乙地,他以平均 80千米/小时的速度用了 4个小时到达乙地,当他按原路匀速返回时.汽车的速度 v千米/小时与时间 t小时的函数关 系是( ) A.v=320t B.v= C.v=20t D.v= 2.(2019 宝安区中考模拟)如果等腰三角形的面积为 10,底边长为 x,底边上的高为 y,则 y与 x的函数关系式为( ) A.y= B.y= C.y= D.y= 3.(2019·连云港市期中)强哥驾驶小汽车(出租)匀速地从如皋火车站送客到南京绿口机 场,全程为 280km,设小汽车的行驶时间为 t(单位:h),行驶速度为 v(单位:km/h),且 全程速度限定为不超过 120km/h. (1)求 v关于 t的函数解析式; (2)强哥上午 8点驾驶小汽车从如皋火车站出发. ①乘客需在当天 10点 48分至 11点 30分(含 10点 48分和 11点 30分)间到达南京绿口机 场,求小汽车行驶速度 v的范围; ②强哥能否在当天 10点前到达绿口机场?说明理由. 考察题型八 反比例函数与其他函数相结合解决实际问题 1.(2019·文登区期末)为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自 2019年 1月开始限产并进行治污改造,其月利润 (万元)与月份 之间的变化如图所示,治 污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的 是( ) A.4月份的利润为 万元 B.污改造完成后每月利润比前一个月增加 万元 C.治污改造完成前后共有 个月的利润低于 万元 D.9月份该厂利润达到 万元 2.(2015·河北中考模拟)已知反比例函数 y= 的图象如图,则二次函数 y=2kx2-4x+k2的图象 大致为( ) A. B. C. D. 3.(2018·安丘市期末)为了预防“流感”,某学校对教室采用药熏法进行消毒,已知药物燃烧 时,室内每立方米空气中的含药量 y(毫克/立方米)与药物点燃后的时间 x(分钟)成正比 例,药物燃尽后,y与 x成反比例(如图所示).已知药物点燃后 4分钟燃尽,此时室内每 立方米空气中含药量为 8毫克. (1)求药物燃烧时,y与 x之间函数的表达式; (2)求药物燃尽后,y与 x之间函数的表达式; (3)研究表明,当空气中每立方米的含药量不低于 2毫克时,才能有效杀灭空气中的病菌, 那么此次消毒有效时间有多长? 考察题型九 反比例函数与几何知识相结合解决问题 1.(2019·贵州中考真题)如图,在平面直角坐标系中,菱形 ABCD在第一象限内,边 BC 与 x轴平行,A,B两点的纵坐标分别为 4,2,反比例函数 y (x>0)的图象经过 A,B 两点,若菱形 ABCD的面积为 2 ,则 k的值为( ) A.2 B.3 C.4 D.6 2.(2018·江苏中考模拟)如图,O是坐标原点,菱形 OABC的顶点 A的坐标为(3,﹣4), 顶点 C在 x轴的正半轴上,函数 y= (k<0)的图象经过点 B,则 k的值为( ) A.﹣12 B.﹣32 C.32 D.﹣36 3.(2017·德州市期末)如图,已知双曲线 经过直角三角形 OAB斜边 OA的中 点 D,且与直角边 AB相交于点 C.若点 A的坐标为( ,4),则△AOC的面积为( ) A.12 B.9 C.6 D.4查看更多