- 2021-11-07 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
二次函数与一元二次方程 教案2
第二十二章 二次函数 22.2 二次函数与一元二次方程 1.总结出二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根,两个相等的实根和没有实根. 2.会利用二次函数的图象求一元二次方程的近似解. 3.会用计算方法估计一元二次方程的根. 重点 方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解. 难点 二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系. 一、复习引入 1.二次函数:y=ax2+bx+c(a≠0)的图象是一条抛物线,它的开口由什么决定呢? 补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立. 2.二次函数y=ax2+bx+c(a≠0)的图象和性质: (1)顶点坐标与对称轴; (2)位置与开口方向; (3)增减性与最值. 当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当x=-时,函数y有最小值. 当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小;当x=-时,函数y有最大值. 二、新课教学 探索二次函数与一元二次方程: 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示. (1)每个图象与x轴有几个交点? (2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 2 归纳:二次函数y=ax2+bx+c的图象和x轴交点有三种情况: ①有两个交点, ②有一个交点, ③没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根. 当b2-4ac>0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac<0时,抛物线与x轴没有交点. 举例:求二次函数图象y=x2-3x+2与x轴的交点A,B的坐标. 结论:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标.因此,抛物线与一元二次方程是有密切联系的. 即:若一元二次方程ax2+bx+c=0的两个根是x1,x2,则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0),B(x2,0). 例1 已知函数y=-x2-7x+, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与y轴的交点关于图象对称轴的对称点,然后画出函数图象的草图; (2)自变量x在什么范围内时,y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值. 三、巩固练习 请完成课本练习:第47页1,2 四、课堂小结 二次函数与一元二次方程根的情况的关系. 五、作业布置 教材第47页 第3,4,5,6题. 2查看更多