九年级下册数学教案 2-2 第2课时 二次函数y=ax2和y=ax2+c的图象与性质 北师大版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

九年级下册数学教案 2-2 第2课时 二次函数y=ax2和y=ax2+c的图象与性质 北师大版

‎2.2 二次函数的图象与性质 第2课时 二次函数y=ax2和y=ax2+c的图象与性质 学习目标:‎ ‎1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.‎ ‎2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.‎ ‎3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.‎ ‎4.体会二次函数是某些实际问题的数学模型.‎ 学习重点:‎ 二次函数y=ax2、y=ax2+c的图象和性质,因为它们的图象和性质是研究二次函数y=ax2+bx+c的图象和性质的基础.我们在学习时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析.‎ 学习难点:‎ 由函数图象概括出y=ax2、y=ax2+c的性质.函数图象都由(1)列表,(2)描点、连线三步完成.我们可根据函数图象来联想函数性质,由性质来分析函数图象的形状和位置.‎ 学习过程:‎ 一、复习:[来源:学科网ZXXK]‎ 二次函数y=x2 与y=-x2的性质:‎ 抛物线[来源:学科网]‎ y=x2‎ y=-x2‎ 对称轴 顶点坐标 开口方向 位置 增减性 最值 二、问题引入:‎ 你知道两辆汽车在行驶时为什么要保持一定距离吗?‎ 刹车距离与什么因素有关?‎ 有研究表明:汽车在某段公路上行驶时,速度为v(km/h)汽车的刹车距离s(m)可以由公式:‎ 晴天时:;雨天时:,请分别画出这两个函数的图像:‎ 三、动手操作、探究:‎ ‎1.在同一平面内画出函数y=2x2与y=2x2+1的图象。‎ ‎2.在同一平面内画出函数y=3x2与y=3x2-1的图象。比较它们的性质,你可以得到什么结论?‎ 四、例题:‎ 【例1】 已知抛物线y=(m+1)x开口向下,求m的值.‎ ‎【例2】在同一坐标系中,作出函数①y=-3x2,②y=3x2,③y=x2,④y=-x2的图象,并根据图象回答问题:(1)当x=2时,y=x2比y=3x2大(或小)多少?(2)当x=-2时,y=-x2比y=-3x2大(或小)多少?‎ ‎【例3】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为k的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.‎ 五、课后练习 ‎1.抛物线y=-4x2-4的开口向 ,当x= 时,y有最 值,y= .‎ ‎2.抛物线y=-3x2上两点A(x,-27),B(2,y),则x= ,y= .‎ ‎3.当m= 时,抛物线y=(m+1)x+9开口向下,对称轴是 .在对称轴左侧,y随x的增大而 ;在对称轴右侧,y随x的增大而 .‎ ‎4.抛物线y=3x2与直线y=kx+3的交点为(2,b),则k= ,b= .‎ ‎5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为 .‎ ‎6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是( )‎ A.y=x2 B.y=-x2 C.y=-2x2 D.y=-x2‎ ‎7.抛物线,y=4x2,y=-2x2的图象,开口最大的是( )‎ A.y=x2 B.y=4x2 C.y=-2x2 D.无法确定 ‎8.对于抛物线y=x2和y=-x2在同一坐标系里的位置,下列说法错误的是( )‎ A.两条抛物线关于x轴对称 B.两条抛物线关于原点对称 C.两条抛物线关于y轴对称 D.两条抛物线的交点为原点 ‎9.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的图象大致为( )‎ ‎10.已知函数y=ax2的图象与直线y=-x+4在第一象限内的交点和它与直线y=x在第一象限内的交点相同,则a的值为( )‎ A.4 B.2 C. D.‎ ‎11.求符合下列条件的抛物线y=ax2的表达式:‎ ‎(1)y=ax2经过(1,2);‎ ‎(2)y=ax2与y=x2的开口大小相等,开口方向相反;‎ ‎(3)y=ax2与直线y=x+3交于点(2,m).‎ ‎12.已知直线y=-2x+3与抛物线y=ax2相交于A、B两点,且A点坐标为(-3,m).‎ ‎(1)求a、m的值;‎ ‎(2)求抛物线的表达式及其对称轴和顶点坐标;‎ ‎(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;‎ ‎(4)求A、B两点及二次函数y=ax2的顶点构成的三角形的面积.‎ ‎13.如图,直线ι经过A(3,0),B(0,3)两点,且与二次函数y=x2+1的图象,在第一象限内相交于点C.求:‎ ‎(1)△AOC的面积;‎ ‎(2)二次函数图象顶点与点A、B组成的三角形的面积.‎ ‎14.有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.‎ ‎(1)在如图2-3-9所示的坐标系中求抛物线的表达式;‎ ‎(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?‎
查看更多

相关文章

您可能关注的文档