- 2021-11-06 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年全国中考数学真题分类汇编:一次函数与反比例函数的综合(解答题)
(分类)滚动小专题(四) 一次函数与反比例函数的综合(解答题) (2019柳州) (2019大庆) (2019绵阳)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD. (1)求m的值和反比例函数的解析式; (2)若点M为一次函数图象上的动点,求OM长度的最小值. 解:(1)将点A(4,1)代入y=, 得,m2﹣3m=4, 解得,m1=4,m2=﹣1, ∴m的值为4或﹣1;反比例函数解析式为:y=; (2)∵BD⊥y轴,AE⊥y轴, ∴∠CDB=∠CEA=90°, ∴△CDB∽△CEA, ∴, ∵CE=4CD, ∴AE=4BD, ∵A(4,1), ∴AE=4, ∴BD=1, ∴xB=1, ∴yB==4, ∴B(1,4), 将A(4,1),B(1,4)代入y=kx+b, 得,, 解得,k=﹣1,b=5, ∴yAB=﹣x+5, 设直线AB与x轴交点为F, 当x=0时,y=5;当y=0时x=5, ∴C(0,5),F(5,0), 则OC=OF=5, ∴△OCF为等腰直角三角形, ∴CF=OC=5, 则当OM垂直CF于M时,由垂线段最知可知,OM有最小值, 即OM=CF=. (2019广元) (2019湘西)如图,一次函数y=kx+b的图象与反比例函数的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB=4. (1)求函数y=和y=kx+b的解析式; (2)结合图象直接写出不等式组0<查看更多
相关文章
- 当前文档收益归属上传用户