2018年重庆市中考数学试卷(B卷)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018年重庆市中考数学试卷(B卷)

‎2018年重庆市中考数学试卷(B卷)‎ ‎ ‎ 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的 ‎1.(4分)下列四个数中,是正整数的是(  )‎ A.﹣1 B.0 C. D.1‎ ‎2.(4分)下列图形中,是轴对称图形的是(  )‎ A. B. C. D.‎ ‎3.(4分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为(  )‎ A.11 B.13 C.15 D.17‎ ‎4.(4分)下列调查中,最适合采用全面调查(普查)的是(  )‎ A.对我市中学生每周课外阅读时间情况的调查 B.对我市市民知晓“礼让行人”交通新规情况的调查 C.对我市中学生观看电影《厉害了,我的国》情况的调查 D.对我国首艘国产航母002型各零部件质量情况的调查 ‎5.(4分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是(  )‎ A.360元 B.720元 C.1080元 D.2160元 ‎6.(4分)下列命题是真命题的是(  )‎ A.如果一个数的相反数等于这个数本身,那么这个数一定是0‎ B.如果一个数的倒数等于这个数本身,那么这个数一定是1‎ C.如果一个数的平方等于这个数本身,那么这个数一定是0‎ D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0‎ ‎7.(4分)估计5﹣的值应在(  )‎ A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间 ‎8.(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(  )‎ A.9 B.7 C.﹣9 D.﹣7‎ ‎9.(4分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)(  )‎ A.21.7米 B.22.4米 C.27.4米 D.28.8米 ‎10.(4分)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是(  )‎ A.2 B. C. D.‎ ‎11.(4分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为(  )‎ A. B.3 C. D.5‎ ‎12.(4分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是(  )‎ A.﹣10 B.﹣12 C.﹣16 D.﹣18‎ ‎ ‎ 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上 ‎13.(4分)计算:|﹣1|+20=   .‎ ‎14.(4分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是   (结果保留π).‎ ‎15.(4分)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是   个.‎ ‎16.(4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于   .‎ ‎17.(4分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为   米.‎ ‎18.(4分)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是   (商品的销售利润率=×100%)‎ ‎ ‎ 三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上 ‎19.(8分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.‎ ‎20.(8分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:‎ ‎(1)八年级(3)班学生总人数是   ,并将条形统计图补充完整;‎ ‎(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.‎ ‎ ‎ 四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上 ‎21.(10分)计算:‎ ‎(1)(x+2y)2﹣(x+y)(x﹣y);‎ ‎(2)(a﹣1﹣)÷‎ ‎22.(10分)如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.‎ ‎(1)求直线l2的解析式;‎ ‎(2)求△BDC的面积.‎ ‎23.(10分)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.‎ ‎(1)按计划,2018年前5个月至少要修建多少个沼气池?‎ ‎(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.‎ ‎24.(10分)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.‎ ‎(1)若BC=12,AB=13,求AF的长;‎ ‎(2)求证:EB=EH.‎ ‎25.(10分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.‎ ‎(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;‎ ‎(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.‎ ‎ ‎ 五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上 ‎26.(12分)抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.‎ ‎(1)如图1,连接CD,求线段CD的长;‎ ‎(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;‎ ‎(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.‎ ‎ ‎ ‎2018年重庆市中考数学试卷(B卷)‎ 参考答案与试题解析 ‎ ‎ 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的 ‎1.(4分)下列四个数中,是正整数的是(  )‎ A.﹣1 B.0 C. D.1‎ ‎【分析】正整数是指既是正数还是整数,由此即可判定求解.‎ ‎【解答】解:A、﹣1是负整数,故选项错误;‎ B、0是非正整数,故选项错误;‎ C、是分数,不是整数,错误;‎ D、1是正整数,故选项正确.‎ 故选:D.‎ ‎ ‎ ‎2.(4分)下列图形中,是轴对称图形的是(  )‎ A. B. C. D.‎ ‎【分析】根据轴对称图形的概念对各选项分析判断即可得解.‎ ‎【解答】解:A、不是轴对称图形,故本选项错误;‎ B、不是轴对称图形,故本选项错误;‎ C、不是轴对称图形,故本选项错误;‎ D、是轴对称图形,故本选项正确.‎ 故选:D.‎ ‎ ‎ ‎3.(4分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥‎ 个图中黑色正方形纸片的张数为(  )‎ A.11 B.13 C.15 D.17‎ ‎【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.‎ ‎【解答】解:观察图形知:‎ 第一个图形有3个正方形,‎ 第二个有5=3+2×1个,‎ 第三个图形有7=3+2×2个,‎ ‎…‎ 故第⑥个图形有3+2×5=13(个),‎ 故选:B.‎ ‎ ‎ ‎4.(4分)下列调查中,最适合采用全面调查(普查)的是(  )‎ A.对我市中学生每周课外阅读时间情况的调查 B.对我市市民知晓“礼让行人”交通新规情况的调查 C.对我市中学生观看电影《厉害了,我的国》情况的调查 D.对我国首艘国产航母002型各零部件质量情况的调查 ‎【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.‎ ‎【解答】解:A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;‎ B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;‎ C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;‎ D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;‎ 故选:D.‎ ‎ ‎ ‎5.(4分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是(  )‎ A.360元 B.720元 C.1080元 D.2160元 ‎【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.‎ ‎【解答】解:3m×2m=6m2,‎ ‎∴长方形广告牌的成本是120÷6=20元/m2,‎ 将此广告牌的四边都扩大为原来的3倍,‎ 则面积扩大为原来的9倍,‎ ‎∴扩大后长方形广告牌的面积=9×6=54m2,‎ ‎∴扩大后长方形广告牌的成本是54×20=1080m2,‎ 故选:C.‎ ‎ ‎ ‎6.(4分)下列命题是真命题的是(  )‎ A.如果一个数的相反数等于这个数本身,那么这个数一定是0‎ B.如果一个数的倒数等于这个数本身,那么这个数一定是1‎ C.如果一个数的平方等于这个数本身,那么这个数一定是0‎ D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0‎ ‎【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.‎ ‎【解答】解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;‎ B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;‎ C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;‎ D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;‎ 故选:A.‎ ‎ ‎ ‎7.(4分)估计5﹣的值应在(  )‎ A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间 ‎【分析】先合并后,再根据无理数的估计解答即可.‎ ‎【解答】解:,‎ ‎∵7<<8,‎ ‎∴5﹣的值应在7和8之间,‎ 故选:C.‎ ‎ ‎ ‎8.(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(  )‎ A.9 B.7 C.﹣9 D.﹣7‎ ‎【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.‎ ‎【解答】解:∵当x=7时,y=6﹣7=﹣1,‎ ‎∴当x=4时,y=2×4+b=﹣1,‎ 解得:b=﹣9,‎ 故选:C.‎ ‎ ‎ ‎9.(4分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)(  )‎ A.21.7米 B.22.4米 C.27.4米 D.28.8米 ‎【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题;‎ ‎【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.‎ 在Rt△CDN中,∵==,设CN=4k,DN=3k,‎ ‎∴CD=10,‎ ‎∴(3k)2+(4k)2=100,‎ ‎∴k=2,‎ ‎∴CN=8,DN=6,‎ ‎∵四边形BMNC是矩形,‎ ‎∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,‎ 在Rt△AEM中,tan24°=,‎ ‎∴0.45=,‎ ‎∴AB=21.7(米),‎ 故选:A.‎ ‎ ‎ ‎10.(4分)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2‎ ‎,则线段CD的长是(  )‎ A.2 B. C. D.‎ ‎【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得 OD 与BC间的位置关系,根据平行线分线段成比例定理,得结论.‎ ‎【解答】解:连接OD ‎∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,‎ ‎∴OD⊥AC 在Rt△AOD中,∵∠A=30°,AD=2,‎ ‎∴OD=OB=2,AO=4,‎ ‎∴∠ODB=∠OBD,又∵BD平分∠ABC,‎ ‎∴∠OBD=∠CBD ‎∴∠ODB=∠CBD ‎∴OD∥CB,‎ ‎∴‎ 即 ‎∴CD=.‎ 故选:B.‎ ‎ ‎ ‎11.(4分)如图,菱形ABCD的边AD⊥‎ y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为(  )‎ A. B.3 C. D.5‎ ‎【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.‎ ‎【解答】‎ 解:‎ 过点D做DF⊥BC于F 由已知,BC=5‎ ‎∵四边形ABCD是菱形 ‎∴DC=5‎ ‎∵BE=3DE ‎∴设DE=x,则BE=3x ‎∴DF=3x,BF=x,FC=5﹣x 在Rt△DFC中,‎ DF2+FC2=DC2‎ ‎∴(3x)2+(5﹣x)2=52‎ ‎∴解得x=1‎ ‎∴DE=1,FD=3‎ 设OB=a 则点D坐标为(1,a+3),点C坐标为(5,a)‎ ‎∵点D、C在双曲线上 ‎∴1×(a+3)=5a ‎∴a=‎ ‎∴点C坐标为(5,)‎ ‎∴k=‎ 故选:C.‎ ‎ ‎ ‎12.(4分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是(  )‎ A.﹣10 B.﹣12 C.﹣16 D.﹣18‎ ‎【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.‎ ‎【解答】解:,‎ 解①得x≥﹣3,‎ 解②得x≤,‎ 不等式组的解集是﹣3≤x≤.‎ ‎∵仅有三个整数解,‎ ‎∴﹣1≤<0‎ ‎∴﹣8≤a<﹣3,‎ ‎+=1‎ ‎3y﹣a﹣12=y﹣2.‎ ‎∴y=‎ ‎∵y≠﹣2,‎ ‎∴a≠﹣6,‎ 又y=有整数解,‎ ‎∴a=﹣8或﹣4,‎ 所有满足条件的整数a的值之和是﹣8﹣4=﹣12,‎ 故选:B.‎ ‎ ‎ 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上 ‎13.(4分)计算:|﹣1|+20= 2 .‎ ‎【分析】本题涉及零指数幂、绝对值2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.‎ ‎【解答】解:|﹣1|+20‎ ‎=1+1‎ ‎=2.‎ 故答案为:2.‎ ‎ ‎ ‎14.(4分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是 8﹣2π (结果保留π).‎ ‎【分析】根据S阴=S△ABD﹣S扇形BAE计算即可;‎ ‎【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,‎ 故答案为8﹣2π.‎ ‎ ‎ ‎15.(4分)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是 34 个.‎ ‎【分析】根据平均数的计算解答即可.‎ ‎【解答】解:,‎ 故答案为:34‎ ‎ ‎ ‎16.(4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于  .‎ ‎【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.‎ ‎【解答】解:由题意可得,‎ DE=DB=CD=AB,‎ ‎∴∠DEC=∠DCE=∠DCB,‎ ‎∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,‎ ‎∴∠DEC=∠ACE,‎ ‎∴∠DCE=∠ACE=∠DCB=30°,‎ ‎∴∠ACD=60°,∠CAD=60°,‎ ‎∴△ACD是等边三角形,‎ ‎∴AC=CD,‎ ‎∴AC=DE,‎ ‎∵AC∥DE,AC=CD,‎ ‎∴四边形ACDE是菱形,‎ ‎∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,‎ ‎∴AC=,‎ ‎∴AE=.‎ ‎ ‎ ‎17.(4分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为 200 米.‎ ‎【分析】由图象可知:家到学校总路程为1200米,分别求小玲和妈妈的速度,妈妈返回时,根据“妈妈返回时骑车的速度只是原来速度的一半”,得速度为60米/分,可得返回时又用了10分钟,此时小玲已经走了25分,还剩5分钟的总程.‎ ‎【解答】解:由图象得:小玲步行速度:1200÷30=40(米/分),‎ 由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,‎ 设妈妈去时的速度为v米/分,‎ ‎(15﹣10)v=15×40,‎ v=120,‎ 则妈妈回家的时间:=10,‎ ‎(30﹣15﹣10)×40=200.‎ 故答案为:200.‎ ‎ ‎ ‎18.(4分)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是  (商品的销售利润率=×100%)‎ ‎【分析】根据每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,可得甲的成本,乙的成本;根据乙种袋装粗粮的销售利润率是20%,可得乙的售价,根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%,可得甲的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.‎ ‎【解答】解:设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得 A一袋的成本是7.5x=3x+y+z,‎ 化简,得 y+z=4.5x;‎ 乙一袋的成本是x+2y+2z=x+2(y+z)=x+9x=10x,‎ 乙一袋的售价为10x(1+20%)=12x,‎ 甲一袋的售价为10x.‎ 根据甲乙的利润,得 ‎(10x﹣7.5x)a+20%×10xb=(7.5xa+10xb)×24%‎ 化简,得 ‎2.5a+2b=1.8a+2.4b ‎0.7a=0.4b ‎=,‎ 故答案为:.‎ ‎ ‎ 三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上 ‎19.(8分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.‎ ‎【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.‎ ‎【解答】解:∵∠EFG=90°,∠E=35°,‎ ‎∴∠FGH=55°,‎ ‎∵GE平分∠FGD,AB∥CD,‎ ‎∴∠FHG=∠HGD=∠FGH=55°,‎ ‎∵∠FHG是△EFH的外角,‎ ‎∴∠EFB=55°﹣35°=20°.‎ ‎ ‎ ‎20.(8分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:‎ ‎(1)八年级(3)班学生总人数是 40人 ,并将条形统计图补充完整;‎ ‎(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.‎ ‎【分析】(1)利用A项目的频数除以它所占的百分比得到调查的总人数,然后计算出C项目的人数后补全条形统计图;‎ ‎(2)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生担任活动记录员的结果数,然后利用概率公式求解.‎ ‎【解答】解:(1)调查的总人数为12÷30%=40(人),‎ 所以C项目的人数为40﹣12﹣14﹣4=10(人)‎ 条形统计图补充为:‎ 故答案为40人;‎ ‎(2)画树状图为:‎ 共有12种等可能的结果数,其中恰好选中1名男生和1名女生担任活动记录员的结果数为8,‎ 所以恰好选中1名男生和1名女生担任活动记录员的概率==.‎ ‎ ‎ 四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上 ‎21.(10分)计算:‎ ‎(1)(x+2y)2﹣(x+y)(x﹣y);‎ ‎(2)(a﹣1﹣)÷‎ ‎【分析】(1)原式利用完全平方公式,平方差公式化简,去括号合并即可得到结果;‎ ‎(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.‎ ‎【解答】解:(1)原式=x2+4xy+4y2﹣x2+y2=4xy+5y2;‎ ‎(2)原式=•=•=.‎ ‎ ‎ ‎22.(10分)如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.‎ ‎(1)求直线l2的解析式;‎ ‎(2)求△BDC的面积.‎ ‎【分析】(1)把x=2代入y=x,得y=1,求出A(2,1).根据平移规律得出直线l3的解析式为y=x﹣4,求出B(0,﹣4)、C(4,﹣2).设直线l2的解析式为y=kx+b,将A、C两点的坐标代入,利用待定系数法即可求出直线l2的解析式;‎ ‎(2)根据直线l2的解析式求出D(0,4),得出BD=8,再利用三角形的面积公式即可求出△BDC的面积.‎ ‎【解答】解:(1)把x=2代入y=x,得y=1,‎ ‎∴A的坐标为(2,1).‎ ‎∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,‎ ‎∴直线l3的解析式为y=x﹣4,‎ ‎∴x=0时,y=﹣4,‎ ‎∴B(0,﹣4).‎ 将y=﹣2代入y=x﹣4,得x=4,‎ ‎∴点C的坐标为(4,﹣2).‎ 设直线l2的解析式为y=kx+b,‎ ‎∵直线l2过A(2,1)、C(4,﹣2),‎ ‎∴,解得,‎ ‎∴直线l2的解析式为y=﹣x+4;‎ ‎(2)∵y=﹣x+4,‎ ‎∴x=0时,y=4,‎ ‎∴D(0,4).‎ ‎∵B(0,﹣4),‎ ‎∴BD=8,‎ ‎∴△BDC的面积=×8×4=16.‎ ‎ ‎ ‎23.(10分)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.‎ ‎(1)按计划,2018年前5个月至少要修建多少个沼气池?‎ ‎(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.‎ ‎【分析】(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,根据沼气池的个数不低于垃圾集中处理点个数的4倍,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论;‎ ‎(2)根据单价=总价÷数量可求出修建每个沼气池的平均费用,进而可求出修建每个垃圾集中点的平均费用,设y=a%结合总价=单价×数量即可得出关于y的一元二次方程,解之即可得出y值,进而可得出a的值.‎ ‎【解答】解:(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,‎ 根据题意得:x≥4(50﹣x),‎ 解得:x≥40.‎ 答:按计划,2018年前5个月至少要修建40个沼气池.‎ ‎(2)修建每个沼气池的平均费用为78÷[40+(50﹣40)×2]=1.3(万元),‎ 修建每个垃圾处理点的平均费用为1.3×2=2.6(万元).‎ 根据题意得:1.3×(1+a%)×40×(1+5a%)+2.6×(1+5a%)×10×(1+8a%)=78×(1+10a%),‎ 设y=a%,整理得:50y2﹣5y=0,‎ 解得:y1=0(不合题意,舍去),y2=0.1,‎ ‎∴a的值为10.‎ ‎ ‎ ‎24.(10分)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.‎ ‎(1)若BC=12,AB=13,求AF的长;‎ ‎(2)求证:EB=EH.‎ ‎【分析】(1)依据BF⊥AC,∠ACB=45°,BC=12,可得等腰Rt△BCF中,BF=sin45°×BC=12,再根据勾股定理,即可得到Rt△ABF中,AF==5;‎ ‎(2)连接GE,过A作AF⊥AG,交BG于P,连接PE,判定四边形APEG是正方形,即可得到PF=EF,AP=AG=CH,进而得出△APB≌△HCE,依据AB=EH,AB=BE,即可得到BE=EH.‎ ‎【解答】解:(1)如图,∵BF⊥AC,∠ACB=45°,BC=12,‎ ‎∴等腰Rt△BCF中,BF=sin45°×BC=12,‎ 又∵AB=13,‎ ‎∴Rt△ABF中,AF==5;‎ ‎(2)如图,连接GE,过A作AF⊥AG,交BG于P,连接PE,‎ ‎∵BE=BA,BF⊥AC,‎ ‎∴AF=FE,‎ ‎∴BG是AE的垂直平分线,‎ ‎∴AG=EG,AP=EP,‎ ‎∵∠GAE=∠ACB=45°,‎ ‎∴△AGE是等腰直角三角形,即∠AGE=90°,‎ ‎△APE是等腰直角三角形,即∠APE=90°,‎ ‎∴∠APE=∠PAG=∠AGE=90°,‎ 又∵AG=EG,‎ ‎∴四边形APEG是正方形,‎ ‎∴PF=EF,AP=AG=CH,‎ 又∵BF=CF,‎ ‎∴BP=CE,‎ ‎∵∠APG=45°=∠BCF,‎ ‎∴∠APB=∠HCE=135°,‎ ‎∴△APB≌△HCE(SAS),‎ ‎∴AB=EH,‎ 又∵AB=BE,‎ ‎∴BE=EH.‎ ‎ ‎ ‎25.(10分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.‎ ‎(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;‎ ‎(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.‎ ‎【分析】(1)先直接利用“极数”的意义写出三个,设出四位数n的个位数字和十位数字,进而表示出n,即可得出结论;‎ ‎(2)先确定出四位数m,进而得出D(m),再再根据完全平方数的意义即可得出结论.‎ ‎【解答】解:(1)根据“极数”的意义得,1287,2376,8712,‎ 任意一个“极数”都是99的倍数,‎ 理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)‎ ‎∴百位数字为(9﹣x),千位数字为(9﹣y),‎ ‎∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),‎ ‎∵x是0到9的整数,y是0到8的整数,‎ ‎∴100﹣10y﹣x是整数,‎ ‎∴99(100﹣10y﹣x)是99的倍数,‎ 即:任意一个“极数”都是99的倍数;‎ ‎(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)‎ ‎∴m=99(100﹣10y﹣x),‎ ‎∴D(m)==3(100﹣10y﹣x),‎ 而m是四位数,‎ ‎∴99(100﹣10y﹣x)是四位数,‎ 即1000≤99(100﹣10y﹣x)<10000,‎ ‎∴30≤3(100﹣10y﹣x)≤303‎ ‎∵D(m)完全平方数,‎ ‎∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,‎ ‎∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,‎ ‎∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.‎ ‎ ‎ 五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上 ‎26.(12分)抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.‎ ‎(1)如图1,连接CD,求线段CD的长;‎ ‎(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;‎ ‎(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.‎ ‎【分析】(1)分别表示C和D的坐标,利用勾股定理可得CD的长;‎ ‎(2)令y=0,可求得A(﹣3,0),B(,0),利用待定系数法可计算直线AC的解析式为:y=,设E(x,),P(x,﹣x2﹣x+‎ ‎),表示PE的长,利用勾股定理计算AC的长,发现∠CAO=30°,得AE=2EF=,计算PE+EC,利用配方法可得当PE+EC的值最大时,x=﹣2,此时P(﹣2,),确定要使四边形PO1B1C周长的最小,即PO1+B1C的值最小,将点P向右平移个单位长度得点P1(﹣,),连接P1B1,则PO1=P1B1,再作点P1关于x轴的对称点P2(﹣,﹣),可得结论;‎ ‎(3)先确定对折后O2C落在AC上,△AMN是以MN为腰的等腰三角形存在四种情况:‎ ‎①如图4,AN=MN,证明△C1EC≌△B2O2M,可计算O2M的长;‎ ‎②如图5,AM=MN,此时M与C重合,O2M=O2C=;‎ ‎③如图6,AM=MN,N和H、C1重合,可得结论;‎ ‎④如图7,AN=MN,过C1作C1E⊥AC于E证明四边形C1EO2B2是矩形,根据O2M=EO2+EM可得结论.‎ ‎【解答】解:(1)如图1,过点D作DK⊥y轴于K,‎ 当x=0时,y=,‎ ‎∴C(0,),‎ y=﹣x2﹣x+=﹣(x+)2+,‎ ‎∴D(﹣,),‎ ‎∴DK=,CK=﹣=,‎ ‎∴CD===;(4分)‎ ‎(2)在y=﹣x2﹣x+中,令y=0,则﹣x2﹣x+=0,‎ 解得:x1=﹣3,x2=,‎ ‎∴A(﹣3,0),B(,0),‎ ‎∵C(0,),‎ 易得直线AC的解析式为:y=,‎ 设E(x,),P(x,﹣x2﹣x+),‎ ‎∴PF=﹣x2﹣x+,EF=,‎ Rt△ACO中,AO=3,OC=,‎ ‎∴AC=2,‎ ‎∴∠CAO=30°,‎ ‎∴AE=2EF=,‎ ‎∴PE+EC=(﹣x2﹣x+)﹣(x+)+(AC﹣AE),‎ ‎=﹣﹣x+[2﹣()],‎ ‎=﹣﹣x﹣x,‎ ‎=﹣(x+2)2+,(5分)‎ ‎∴当PE+EC的值最大时,x=﹣2,此时P(﹣2,),(6分)‎ ‎∴PC=2,‎ ‎∵O1B1=OB=,‎ ‎∴要使四边形PO1B1C周长的最小,即PO1+B1C的值最小,‎ 如图2,将点P向右平移个单位长度得点P1(﹣,),连接P1B1,则PO1=P1B1,‎ 再作点P1关于x轴的对称点P2(﹣,﹣),则P1B1=P2B1,‎ ‎∴PO1+B1C=P2B1+B1C,‎ ‎∴连接P2C与x轴的交点即为使PO1+B1C的值最小时的点B1,‎ ‎∴B1(﹣,0),‎ 将B1向左平移个单位长度即得点O1,‎ 此时PO1+B1C=P2C==,‎ 对应的点O1的坐标为(﹣,0),(7分)‎ ‎∴四边形PO1B1C周长的最小值为+3;(8分)‎ ‎(3)O2M的长度为或或2+或2.(12分)‎ 理由是:如图3,∵H是AB的中点,‎ ‎∴OH=,‎ ‎∵OC=,‎ ‎∴CH=BC=2,‎ ‎∴∠HCO=∠BCO=30°,‎ ‎∵∠ACO=60°,‎ ‎∴将CO沿CH对折后落在直线AC上,即O2在AC上,‎ ‎∴∠B2CA=∠CAB=30°,‎ ‎∴B2C∥AB,‎ ‎∴B2(﹣2,),‎ ‎①如图4,AN=MN,‎ ‎∴∠MAN=∠AMN=30°=∠O2B2O3,‎ 由旋转得:∠CB2C1=∠O2B2O3=30°,B2C=B2C1,‎ ‎∴∠B2CC1=∠B2C1C=75°,‎ 过C1作C1E⊥B2C于E,‎ ‎∵B2C=B2C1=2,‎ ‎∴=B2O2,B2E=,‎ ‎∵∠O2MB2=∠B2MO3=75°=∠B2CC1,‎ ‎∠B2O2M=∠C1EC=90°,‎ ‎∴△C1EC≌△B2O2M,‎ ‎∴O2M=CE=B2C﹣B2E=2﹣;‎ ‎②如图5,AM=MN,此时M与C重合,O2M=O2C=,‎ ‎③如图6,AM=MN,‎ ‎∵B2C=B2C1=2=B2H,即N和H、C1重合,‎ ‎∴∠CAO=∠AHM=∠MHO2=30°,‎ ‎∴O2M=AO2=;‎ ‎④如图7,AN=MN,过C1作C1E⊥AC于E,‎ ‎∴∠NMA=∠NAM=30°,‎ ‎∵∠O3C1B2=30°=∠O3MA,‎ ‎∴C1B2∥AC,‎ ‎∴∠C1B2O2=∠AO2B2=90°,‎ ‎∵∠C1EC=90°,‎ ‎∴四边形C1EO2B2是矩形,‎ ‎∴EO2=C1B2=2,,‎ ‎∴EM=,‎ ‎∴O2M=EO2+EM=2+,‎ 综上所述,O2M的长是或或2+或2.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档