2018年湖南省常德市中考数学试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018年湖南省常德市中考数学试卷

‎2018年湖南省常德市中考数学试卷 ‎ ‎ 一、选择题(本大题8个小题,每小题3分,满分24分)‎ ‎1.(3.00分)﹣2的相反数是(  )‎ A.2 B.﹣2 C.2﹣1 D.﹣‎ ‎2.(3.00分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是(  )‎ A.1 B.2 C.8 D.11‎ ‎3.(3.00分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是(  )‎ A.a>b B.|a|<|b| C.ab>0 D.﹣a>b ‎4.(3.00分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则(  )‎ A.k<2 B.k>2 C.k>0 D.k<0‎ ‎5.(3.00分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适(  )‎ A.甲 B.乙 C.丙 D.丁 ‎6.(3.00分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为(  )‎ A.6 B.5 C.4 D.3‎ ‎7.(3.00分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为(  )‎ A. B. C. D.‎ ‎8.(3.00分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,Dx=,Dy=.‎ 问题:对于用上面的方法解二元一次方程组时,下面说法错误的是(  )‎ A.D==﹣7 B.Dx=﹣14‎ C.Dy=27 D.方程组的解为 ‎ ‎ 二、填空题(本大题8个小题,每小题3分,满分24分)‎ ‎9.(3.00分)﹣8的立方根是   .‎ ‎10.(3.00分)分式方程﹣=0的解为x=   .‎ ‎11.(3.00分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为   千米.‎ ‎12.(3.00分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是   .‎ ‎13.(3.00分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是   (只写一个).‎ ‎14.(3.00分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为   .‎ 视力x 频数 ‎4.0≤x<4.3‎ ‎20‎ ‎4.3≤x<4.6‎ ‎40‎ ‎4.6≤x<4.9‎ ‎70‎ ‎4.9≤x≤5.2‎ ‎60‎ ‎5.2≤x<5.5‎ ‎10‎ ‎15.(3.00分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=   .‎ ‎16.(3.00分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是   .‎ ‎ ‎ 三、(本大题2个小题,每小题5分,满分10分)‎ ‎17.(5.00分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.‎ ‎18.(5.00分)求不等式组的正整数解.‎ ‎ ‎ 四、(本大题2个小题,每小题6分,满分12分)‎ ‎19.(6.00分)先化简,再求值:(+)÷,其中x=.‎ ‎20.(6.00分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.‎ ‎(1)求一次函数与反比例函数的解析式;‎ ‎(2)请根据图象直接写出y1<y2时x的取值范围.‎ ‎ ‎ 五、(本大题2个小题,每小题7分,满分14分)‎ ‎21.(7.00分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.‎ ‎(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?‎ ‎(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?‎ ‎22.(7.00分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)‎ ‎ ‎ 六、(本大题2个小题,每小题8分,满分16分)‎ ‎23.(8.00分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:‎ ‎(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);‎ ‎(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?‎ ‎(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?‎ ‎(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.‎ ‎24.(8.00分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.‎ ‎(1)求证:EA是⊙O的切线;‎ ‎(2)求证:BD=CF.‎ ‎ ‎ 七、(本大题2个小题,每小题10分,满分20分)‎ ‎25.(10.00分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.‎ ‎(1)求该二次函数的解析式;‎ ‎(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;‎ ‎(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.‎ ‎26.(10.00分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.‎ ‎(1)如图1,当M在线段BO上时,求证:MO=NO;‎ ‎(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;‎ ‎(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.‎ ‎ ‎ ‎2018年湖南省常德市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题8个小题,每小题3分,满分24分)‎ ‎1.(3.00分)﹣2的相反数是(  )‎ A.2 B.﹣2 C.2﹣1 D.﹣‎ ‎【分析】直接利用相反数的定义分析得出答案.‎ ‎【解答】解:﹣2的相反数是:2.‎ 故选:A.‎ ‎ ‎ ‎2.(3.00分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是(  )‎ A.1 B.2 C.8 D.11‎ ‎【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.‎ ‎【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,‎ ‎4<x<10,‎ 故选:C.‎ ‎ ‎ ‎3.(3.00分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是(  )‎ A.a>b B.|a|<|b| C.ab>0 D.﹣a>b ‎【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.‎ ‎【解答】解:由数轴可得,‎ ‎﹣2<a<﹣1<0<b<1,‎ ‎∴a<b,故选项A错误,‎ ‎|a|>|b|,故选项B错误,‎ ab<0,故选项C错误,‎ ‎﹣a>b,故选项D正确,‎ 故选:D.‎ ‎ ‎ ‎4.(3.00分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则(  )‎ A.k<2 B.k>2 C.k>0 D.k<0‎ ‎【分析】根据一次函数的性质,可得答案.‎ ‎【解答】解:由题意,得 k﹣2>0,‎ 解得k>2,‎ 故选:B.‎ ‎ ‎ ‎5.(3.00分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适(  )‎ A.甲 B.乙 C.丙 D.丁 ‎【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.‎ ‎【解答】解:∵1.5<2.6<3.5<3.68,‎ ‎∴甲的成绩最稳定,‎ ‎∴派甲去参赛更好,‎ 故选:A.‎ ‎ ‎ ‎6.(3.00分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为(  )‎ A.6 B.5 C.4 D.3‎ ‎【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.‎ ‎【解答】解:∵ED是BC的垂直平分线,‎ ‎∴DB=DC,‎ ‎∴∠C=∠DBC,‎ ‎∵BD是△ABC的角平分线,‎ ‎∴∠ABD=∠DBC,‎ ‎∴∠C=∠DBC=∠ABD=30°,‎ ‎∴BD=2AD=6,‎ ‎∴CE=CD×cos∠C=3,‎ 故选:D.‎ ‎ ‎ ‎7.(3.00分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为(  )‎ A. B. C. D.‎ ‎【分析】根据从正面看得到的图形是主视图,可得答案.‎ ‎【解答】解:从正面看是一个等腰三角形,高线是虚线,‎ 故选:D.‎ ‎ ‎ ‎8.(3.00分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,Dx=,Dy=.‎ 问题:对于用上面的方法解二元一次方程组时,下面说法错误的是(  )‎ A.D==﹣7 B.Dx=﹣14‎ C.Dy=27 D.方程组的解为 ‎【分析】分别根据行列式的定义计算可得结论.‎ ‎【解答】解:A、D==﹣7,正确;‎ B、Dx==﹣2﹣1×12=﹣14,正确;‎ C、Dy==2×12﹣1×3=21,不正确;‎ D、方程组的解:x===2,y===﹣3,正确;‎ 故选:C.‎ ‎ ‎ 二、填空题(本大题8个小题,每小题3分,满分24分)‎ ‎9.(3.00分)﹣8的立方根是 ﹣2 .‎ ‎【分析】利用立方根的定义即可求解.‎ ‎【解答】解:∵(﹣2)3=﹣8,‎ ‎∴﹣8的立方根是﹣2.‎ 故答案为:﹣2.‎ ‎ ‎ ‎10.(3.00分)分式方程﹣=0的解为x= ﹣1 .‎ ‎【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.‎ ‎【解答】解:去分母得:x﹣2﹣3x=0,‎ 解得:x=﹣1,‎ 经检验x=1是分式方程的解.‎ 故答案为:﹣1‎ ‎ ‎ ‎11.(3.00分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108 千米.‎ ‎【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.‎ ‎【解答】解:1 5000 0000=1.5×108,‎ 故答案为:1.5×108.‎ ‎ ‎ ‎12.(3.00分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是 1 .‎ ‎【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.‎ ‎【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,‎ 所以这组数据的中位数为1,‎ 故答案为:1.‎ ‎ ‎ ‎13.(3.00分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是 6 (只写一个).‎ ‎【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.‎ ‎【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,‎ ‎∴△=b2﹣4×2×3>0,‎ 解得:b<﹣2或b>2.‎ 故答案可以为:6.‎ ‎ ‎ ‎14.(3.00分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为 0.35 .‎ 视力x 频数 ‎4.0≤x<4.3‎ ‎20‎ ‎4.3≤x<4.6‎ ‎40‎ ‎4.6≤x<4.9‎ ‎70‎ ‎4.9≤x≤5.2‎ ‎60‎ ‎5.2≤x<5.5‎ ‎10‎ ‎【分析】直接利用频数÷总数=频率进而得出答案.‎ ‎【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,‎ 则视力在4.9≤x<5.5这个范围的频率为:=0.35.‎ 故答案为:0.35.‎ ‎ ‎ ‎15.(3.00分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= 75° .‎ ‎【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.‎ ‎【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,‎ ‎∴∠EBG=∠EGB.‎ ‎∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.‎ 又∵AD∥BC,‎ ‎∴∠AGB=∠GBC.‎ ‎∴∠AGB=∠BGH.‎ ‎∵∠DGH=30°,‎ ‎∴∠AGH=150°,‎ ‎∴∠AGB=∠AGH=75°,‎ 故答案为:75°.‎ ‎ ‎ ‎16.(3.00分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是 9 .‎ ‎【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.‎ ‎【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,‎ 所以有x﹣12+x=2×3,‎ 解得x=9.‎ 故答案为9.‎ ‎ ‎ 三、(本大题2个小题,每小题5分,满分10分)‎ ‎17.(5.00分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.‎ ‎【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.‎ ‎【解答】解:原式=1﹣(2﹣1)+2﹣4,‎ ‎=1﹣2+1+2﹣4,‎ ‎=﹣2.‎ ‎ ‎ ‎18.(5.00分)求不等式组的正整数解.‎ ‎【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.‎ ‎【解答】解:,‎ 解不等式①,得x>﹣2,‎ 解不等式②,得x≤,‎ 不等式组的解集是﹣2<x≤,‎ 不等式组的正整数解是1,2,3,4.‎ ‎ ‎ 四、(本大题2个小题,每小题6分,满分12分)‎ ‎19.(6.00分)先化简,再求值:(+)÷,其中x=.‎ ‎【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.‎ ‎【解答】解:原式=[+]×(x﹣3)2‎ ‎=×(x﹣3)2‎ ‎=x﹣3,‎ 把x=代入得:原式=﹣3=﹣.‎ ‎ ‎ ‎20.(6.00分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.‎ ‎(1)求一次函数与反比例函数的解析式;‎ ‎(2)请根据图象直接写出y1<y2时x的取值范围.‎ ‎【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;‎ ‎(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.‎ ‎【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),‎ ‎∴k2=4×1=4,‎ ‎∴反比例函数的解析式为y2=.‎ ‎∵点B(n,﹣2)在反比例函数y2=的图象上,‎ ‎∴n=4÷(﹣2)=﹣2,‎ ‎∴点B的坐标为(﹣2,﹣2).‎ 将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,‎ ‎,解得:,‎ ‎∴一次函数的解析式为y=x﹣1.‎ ‎(2)观察函数图象,可知:当x<﹣2和0<x<‎ ‎4时,一次函数图象在反比例函数图象下方,‎ ‎∴y1<y2时x的取值范围为x<﹣2或0<x<4.‎ ‎ ‎ 五、(本大题2个小题,每小题7分,满分14分)‎ ‎21.(7.00分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.‎ ‎(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?‎ ‎(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?‎ ‎【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;‎ ‎(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.‎ ‎【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,‎ 根据题意得:,‎ 解得:.‎ 答:该店5月份购进甲种水果190千克,购进乙种水果10千克.‎ ‎(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,‎ 根据题意得:w=10a+20(120﹣a)=﹣10a+2400.‎ ‎∵甲种水果不超过乙种水果的3倍,‎ ‎∴a≤3(120﹣a),‎ 解得:a≤90.‎ ‎∵k=﹣10<0,‎ ‎∴w随a值的增大而减小,‎ ‎∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.‎ ‎∴月份该店需要支付这两种水果的货款最少应是1500元.‎ ‎ ‎ ‎22.(7.00分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)‎ ‎【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.‎ ‎【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.‎ ‎∵AB=CD,AB+CD=AD=2,‎ ‎∴AB=CD=1.‎ 在Rt△ABE中,AB=1,∠A=37°,‎ ‎∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.‎ 在Rt△CDF中,CD=1,∠D=45°,‎ ‎∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.‎ ‎∵BE⊥AD,CF⊥AD,‎ ‎∴BE∥CM,‎ 又∵BE=CM,‎ ‎∴四边形BEMC为平行四边形,‎ ‎∴BC=EM,CM=BE.‎ 在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,‎ ‎∴EM=≈1.4,‎ ‎∴B与C之间的距离约为1.4米.‎ ‎ ‎ 六、(本大题2个小题,每小题8分,满分16分)‎ ‎23.(8.00分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:‎ ‎(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);‎ ‎(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?‎ ‎(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?‎ ‎(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.‎ ‎【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;‎ ‎(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;‎ ‎(3)用360°乘以喜欢篮球人数所占的百分比即可;‎ ‎(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.‎ ‎【解答】解:(1)调查的总人数为8÷16%=50(人),‎ 喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),‎ 所以喜欢乒乓球的学生所占的百分比=×100%=28%,‎ 补全条形统计图如下:‎ ‎(2)500×12%=60,‎ 所以估计全校500名学生中最喜欢“排球”项目的有60名;‎ ‎(3),篮球”部分所对应的圆心角=360×40%=144°;‎ ‎(4)画树状图为:‎ 共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,‎ 所以抽取的两人恰好是甲和乙的概率==.‎ ‎ ‎ ‎24.(8.00分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.‎ ‎(1)求证:EA是⊙O的切线;‎ ‎(2)求证:BD=CF.‎ ‎【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;‎ ‎(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,‎ 得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.‎ ‎【解答】证明:(1)连接OD,‎ ‎∵⊙O是等边三角形ABC的外接圆,‎ ‎∴∠OAC=30°,∠BCA=60°,‎ ‎∵AE∥BC,‎ ‎∴∠EAC=∠BCA=60°,‎ ‎∴∠OAE=∠OAC+∠EAC=30°+60°=90°,‎ ‎∴AE是⊙O的切线;‎ ‎(2)∵△ABC是等边三角形,‎ ‎∴AB=AC,∠BAC=∠ABC=60°,‎ ‎∵A、B、C、D四点共圆,‎ ‎∴∠ADF=∠ABC=60°,‎ ‎∵AD=DF,‎ ‎∴△ADF是等边三角形,‎ ‎∴AD=AF,∠DAF=60°,‎ ‎∴∠BAC+∠CAD=∠DAF+∠CAD,‎ 即∠BAF=∠CAF,‎ 在△BAD和△CAF中,‎ ‎∵,‎ ‎∴△BAD≌△CAF,‎ ‎∴BD=CF.‎ ‎ ‎ 七、(本大题2个小题,每小题10分,满分20分)‎ ‎25.(10.00分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.‎ ‎(1)求该二次函数的解析式;‎ ‎(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;‎ ‎(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.‎ ‎【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;‎ ‎(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=•4•t﹣•t•t,然后根据二次函数的性质解决问题;‎ ‎(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当=时,△PQO ‎∽△COA,则|m2﹣m|=2|m|;当=时,△PQO∽△CAO,则|m2﹣m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.‎ ‎【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,‎ ‎∴B点坐标为(6,0),‎ 设抛物线解析式为y=ax(x﹣6),‎ 把A(8,4)代入得a•8•2=4,解得a=,‎ ‎∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;‎ ‎(2)设M(t,0),‎ 易得直线OA的解析式为y=x,‎ 设直线AB的解析式为y=kx+b,‎ 把B(6,0),A(8,4)代入得,解得,‎ ‎∴直线AB的解析式为y=2x﹣12,‎ ‎∵MN∥AB,‎ ‎∴设直线MN的解析式为y=2x+n,‎ 把M(t,0)代入得2t+n=0,解得n=﹣2t,‎ ‎∴直线MN的解析式为y=2x﹣2t,‎ 解方程组得,则N(t,t),‎ ‎∴S△AMN=S△AOM﹣S△NOM ‎=•4•t﹣•t•t ‎=﹣t2+2t ‎=﹣(t﹣3)2+3,‎ 当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);‎ ‎(3)设Q(m,m2﹣m),‎ ‎∵∠OPQ=∠ACO,‎ ‎∴当=时,△PQO∽△COA,即=,‎ ‎∴PQ=2PO,即|m2﹣m|=2|m|,‎ 解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);‎ 解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);‎ ‎∴当=时,△PQO∽△CAO,即=,‎ ‎∴PQ=PO,即|m2﹣m|=|m|,‎ 解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),‎ 解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);‎ 综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).‎ ‎ ‎ ‎26.(10.00分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.‎ ‎(1)如图1,当M在线段BO上时,求证:MO=NO;‎ ‎(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;‎ ‎(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.‎ ‎【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;‎ ‎(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;‎ ‎(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+‎ b,根据勾股定理得,AC=(a+b),‎ 同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.‎ ‎【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,‎ ‎∴OD=OA,∠AOM=∠DON=90°,‎ ‎∴∠OND+∠ODN=90°,‎ ‎∵∠ANH=∠OND,‎ ‎∴∠ANH+∠ODN=90°,‎ ‎∵DH⊥AE,‎ ‎∴∠DHM=90°,‎ ‎∴∠ANH+∠OAM=90°,‎ ‎∴∠ODN=∠OAM,‎ ‎∴△DON≌△AOM,‎ ‎∴OM=ON;‎ ‎(2)连接MN,‎ ‎∵EN∥BD,‎ ‎∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,‎ ‎∴EN=CN,同(1)的方法得,OM=ON,‎ ‎∵OD=OD,‎ ‎∴DM=CN=EN,‎ ‎∵EN∥DM,‎ ‎∴四边形DENM是平行四边形,‎ ‎∵DN⊥AE,‎ ‎∴▱DENM是菱形,‎ ‎∴DE=EN,‎ ‎∴∠EDN=∠END,‎ ‎∵EN∥BD,‎ ‎∴∠END=∠BDN,‎ ‎∴∠EDN=∠BDN,‎ ‎∵∠BDC=45°,‎ ‎∴∠BDN=22.5°,‎ ‎∵∠AHD=90°,‎ ‎∴∠AMB=∠DME=90°﹣∠BDN=67.5°,‎ ‎∵∠ABM=45°,‎ ‎∴∠BAM=67.5°=∠AMB,‎ ‎∴BM=AB;‎ ‎(3)设CE=a(a>0)‎ ‎∵EN⊥CD,‎ ‎∴∠CEN=90°,‎ ‎∵∠ACD=45°,‎ ‎∴∠CNE=45°=∠ACD,‎ ‎∴EN=CE=a,‎ ‎∴CN=a,‎ 设DE=b(b>0),‎ ‎∴AD=CD=DE+CE=a+b,‎ 根据勾股定理得,AC=AD=(a+b),‎ 同(1)的方法得,∠OAM=∠ODN,‎ ‎∵∠OAD=∠ODC=45°,‎ ‎∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,‎ ‎∴△DEN∽△ADE,‎ ‎∴,‎ ‎∴,‎ ‎∴a=b(已舍去不符合题意的)‎ ‎∴CN=a=b,AC=(a+b)=b,‎ ‎∴AN=AC﹣CN=b,‎ ‎∴AN2=2b2,AC•CN=b•b=2b2‎ ‎∴AN2=AC•CN.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档