2020九年级数学上册 第二十五章 概率初步 25

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020九年级数学上册 第二十五章 概率初步 25

‎25.2 第1课时 用列表法求概率 ‎01  教学目标 ‎1.理解并掌握用列举法(列表法)求概率的方法.‎ ‎2.利用列举法(列表法)求概率解决问题.‎ ‎02  预习反馈 ‎1.在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.‎ ‎2.当一次试验要涉及两个因素并且可能出现的结果数较多时,为不重不漏地列出所有可能的结果,通常采用列表法.‎ ‎3.有A,B两只不透明的口袋,每只口袋装有两个相同的球,A袋中的两个球上分别写了“细”和“致”的字样,B袋中的两个球上分别写了“信”和“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概率是.‎ ‎4.袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为.‎ ‎03  新课讲授 类型1 用列举法求概率 5‎ 例1 (教材P136例1)同时抛掷两枚质地均匀的硬币,求下列事件的概率:‎ ‎(1)两枚硬币全部正面向上;‎ ‎(2)两枚硬币全部反面向上;‎ ‎(3)一枚硬币正面向上、一枚硬币反面向上.‎ ‎【解答】 列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反.‎ 所有可能的结果共有4种,并且这4种结果出现的可能性相等.‎ ‎(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A)的结果只有1种,即“正正”,所以P(A)=.‎ ‎(2)两枚硬币全部反面向上(记为事件B)的结果也只有1种,即“反反”,所以P(B)=.‎ ‎(3)一枚硬币正面向上、一枚硬币反面向上(记为事件C)的结果共有2种,即“反正”“正反”,所以P(C)==.‎ 思考:“同时抛掷两枚质地均匀的硬币”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果一样吗?‎ ‎【跟踪训练1】 掷两次1元硬币,至少有一次正面(币值一面)朝上的概率是(C)‎ A. B. C. D. ‎【跟踪训练2】 在“a2□2ab□b2”的两个空格中,顺次填上“+”或“-”,恰好能构成完全平方式的概率是.‎ 类型2 用列表法求概率 例2 (教材P136例2变式)同时抛掷两枚大小形状都相同、质地均匀的骰子,计算下列事件的概率:‎ ‎(1)两枚骰子的点数之和为4;‎ ‎(2)至少有一枚骰子的点数为5.‎ ‎【解答】 列表如下:‎ 5‎ ‎  第1枚 第2枚  ‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎1‎ ‎(1,1)‎ ‎(1,2)‎ ‎(1,3)‎ ‎(1,4)‎ ‎(1,5)‎ ‎(1,6)‎ ‎2‎ ‎(2,1)‎ ‎(2,2)‎ ‎(2,3)‎ ‎(2,4)‎ ‎(2,5)‎ ‎(2,6)‎ ‎3‎ ‎(3,1)‎ ‎(3,2)‎ ‎(3,3)‎ ‎(3,4)‎ ‎(3,5)‎ ‎(3,6)‎ ‎4‎ ‎(4,1)‎ ‎(4,2)‎ ‎(4,3)‎ ‎(4,4)‎ ‎(4,5)‎ ‎(4,6)‎ ‎5‎ ‎(5,1)‎ ‎(5,2)‎ ‎(5,3)‎ ‎(5,4)‎ ‎(5,5)‎ ‎(5,6)‎ ‎6‎ ‎(6,1)‎ ‎(6,2)‎ ‎(6,3)‎ ‎(6,4)‎ ‎(6,5)‎ ‎(6,6)‎ ‎  由表可以看出,可能出现的结果有36种,并且它们出现的可能性相等.‎ ‎(1)两枚骰子的点数之和为4(记为事件A)的结果有3种,即(1,3),(2,2),(3,1),所以P(A)==.‎ ‎(2)至少有一枚骰子的点数为5(记为事件B)的结果有11种,即(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),所以P(B)=.‎ 思考:“同时掷两枚质地均匀的骰子”与“把一枚质地均匀的骰子掷两次”,这两种试验的所有可能结果一样吗?‎ ‎【跟踪训练3】 不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为(B)‎ A. B. C. D. ‎【跟踪训练4】 不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为(C)‎ A. B. C. D. 思考:摸球后“放回”与“不放回”,这两种试验的所有可能结果一样吗?‎ 5‎ ‎04  巩固训练 ‎1.从长度分别为2,3,4,5的4条线段中任取3条,能构成三角形的概率为(D)‎ A. B. C. D. ‎2.某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1,2,3,李军和赵娟两人可任选一辆车乘坐,则两人同坐2号车的概率为(A)‎ A. B. C. D. ‎3.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.‎ ‎4.有三张正面分别标有数字-3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.求下列事件的概率:‎ ‎(1)两次抽取的卡片上的数字之积为负数;‎ ‎(2)两次抽取的卡片上的数字之和为非负数.‎ 解:列表如下:‎ ‎  第1次 第2次  ‎ ‎-3‎ ‎1‎ ‎3‎ ‎-3‎ ‎(-3,-3)‎ ‎(-3,1)‎ ‎(-3,3)‎ ‎1‎ ‎(1,-3)‎ ‎(1,1)‎ ‎(1,3)‎ ‎3‎ ‎(3,-3)‎ ‎(3,1)‎ ‎(3,3)‎ 由表可以看出,可能出现的结果有9种,并且它们出现的可能性相等.‎ ‎(1)两次抽取的卡片上的数字之积为负数(记为事件A)的结果有4种,即(-3,1),(-3,3),(1,-3),(3,-3),所以P(A)=.‎ ‎(2)两次抽取的卡片上的数字之和为非负数(记为事件B)的结果有6种,即(-3,3),(1,1),(1,3),(3,-3),(3,1),(3,3),所以P(B)==.‎ ‎05  课堂小结 5‎ ‎1.用列表法求概率时要注意不重不漏地列出所有可能结果.‎ ‎2.列表法可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率.当试验包含两步时,列表法比较方便.‎ 5‎
查看更多

相关文章

您可能关注的文档