- 2021-10-27 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级数学上册第十三章轴对称13-3等腰三角形13-3-2等边三角形第1课时等边三角形的性质和判定教案新版 人教版
13.3.2 等边三角形 第1课时 等边三角形的性质和判定 1.掌握等边三角形的定义. 2.理解等边三角形的性质与判定. 重点 等边三角形的性质和判定. 难点 等边三角形的性质的应用. 一、问题引入 在等腰三角形中,如果底边与腰相等,会得到什么结论? 二、自主探究 1.等边三角形的定义 底边和腰相等的等腰三角形叫做等边三角形. 2.思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形? 边:三条边都相等. 角:三个角都相等,并且每一个角都等于60°. 3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA吗?为什么? 你从中能得到什么结论? 三个角都相等的三角形是等边三角形. 4.在△ABC中,AB=AC,∠A=60°.(1)求证:△ABC是等边三角形; (2)如果把∠A=60°改为∠B=60°或∠C=60°,那么结论还成立吗? (3)由上你可以得到什么结论? 有一个角是60°的等腰三角形是等边三角形. 三、应用举例 1.教材例4. 例4 如图,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.求证:△ADE是等边三角形. 证明:∵△ABC是等边三角形,∴∠A=∠B=∠C. ∵DE∥BC,∴∠ADE=∠B,∠AED=∠C, ∴∠A=∠ADE=∠AED, ∴△ADE是等边三角形. 2.归纳:在判定三角形是等边三角形时: 2 (1)若三角形是一般三角形,只要找三个角相等或三条边相等; (2)若三角形是等腰三角形,一般是找一个角等于60°. 四、巩固练习 教材第80页练习第1,2题. 补充题: 1.如图,已知等边△ABC,点D,E,F分别是各边上的一点,且AD=BE=CF.求证:△DEF是等边三角形. 2.如图,已知等边△ABC,点D是AC的中点,且CE=CD,DF⊥BE.求证:BF=EF. ,第2题图) 教师提出要求,补充题1,2可以让学生板书过程. 五、总结提高 小结:通过本节课的学习,你了解到了等边三角形有哪些特点? 怎样判定一个三角形是等边三角形? 布置作业:教材习题13.3第12,14题. 教学中设计了两个问题:把等腰三角形的性质用于等边三角形,你能得到什么结论?类似地,你又能得到哪些等边三角形的判定方法?让学生先自主探索再合作交流,小组内、小组间充分讨论后概括所得结论.这既巩固应用等腰三角形的知识,又类比探索等边三角形性质定理和判定定理的方法,并使学生加深对等腰三角形与等边三角形的联系与区别的理解. 2查看更多