- 2021-10-27 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八上时 整式
§15.1.1 整式 教学目标 1.单项式、单项式的定义. 2.多项式、多项式的次数. 3、理解整式概念. 教学重点 单项式及多项式的有关概念. 教学难点 单项式及多项式的有关概念. 教学过程 Ⅰ.提出问题,创设情境 在七年级,我们已经学习了用字母可以表示数,思考下列问题 1.要表示△ABC的周长需要什么条件?要表示它的面积呢? 2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少? 结论: 1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为·c·h. 2.小王的平均速度是. 问题:这些式子有什么特征呢? (1)有数字、有表示数字的字母. (2)数字与字母、字母与字母之间还有运算符号连接. 归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式. 判断上面得到的三个式子:a+b+c、ch、是不是代数式?(是) 代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式. Ⅱ.明确和巩固整式有关概念 (出示投影) 思考: 先填空,再看看列出的代数式有什么特点. (1)边长为x的正方形的周长为_________; (2)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为_______千米. (3)如图,正方体的表面积为_______,正方体的体积为________; (4)设n表示一个数,则它的相反数是________. 结论:(1)正方形的周长:4x. (2)汽车走过的路程:vt. (3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3. (4)n的相反数是-n. 分析这四个数的特征. 它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同. 请同学们阅读课本P160~P161单项式有关概念. 根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数. 结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式. 问题:vt中v和t的指数都是1,它不是一次单项式吗? 结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一 次单项式. 生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢? 写出下列式子(出示投影) 结论:(1)t-5.(2)3x+5y+2z. (3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.14r2. (4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18. 我们可以观察下列代数式: a+b+c、t-5、3x+5y+2z、ab-3.14r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式? 这样推理合情合理.请看投影,熟悉下列概念. 几个单项式的和叫做多项式. 多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项. 多项式中次数最高的项的次数即这个多项式的次数. 根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.14r2、x2+2x+18都是多项式.请分别指出它们的项和次数. a+b+c的项分别是a、b、c. t-5的项分别是t、-5,其中-5是常数项. 3x+5y+2z的项分别是3x、5y、2z. ab-3.14r2的项分别是ab、-3.14r2. x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式. 这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式. Ⅲ.随堂练习 1.课本P162练习 Ⅳ.课时小结 通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感. Ⅴ.课后作业 1.课本P165~P166习题15.1─1、5、8、9题. 2.预习“整式的加减”. 课后作业:《课堂感悟与探究》查看更多