八年级上分式的乘除 冀教

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

八年级上分式的乘除 冀教

‎14.2 分式的乘除 ‎ ‎ ‎〖教学目标〗‎ ‎(-)知识目标(调整:把教材的乘除法安排为一课时,第二课时安排乘除法的巩固与提高)‎ ‎1.分式乘除法的运算法则,‎ ‎2.会进行分式的乘除法的运算.‎ ‎(二)能力目标 ‎1.类比分数乘除法的运算法则.探索分式乘除法的运算法则.‎ ‎2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力.‎ ‎(三)情感目标 通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感.‎ ‎〖教学重点〗‎ 让学生掌握分式乘除法的法则及其应用.‎ ‎〖教学难点〗‎ 分子、分母是多项式的分式的乘除法的运算.‎ ‎〖教学过程〗‎ 一、课前布置 自学:阅读课本P32~P34,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).‎ 二、学情诊断 ‎1.了解学生原有认知机构,解答学生提出的问题.‎ 三、师生互动 ‎[师]上节课,我们是运用与分数类比的方法,研究了分式的基本性质,那么分式的运算是否也可以和分数的运算类似呢?‎ 通过自学,你能做分式的乘法运算吗,谁来说一说你是怎样做的?‎ ‎[生]两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;‎ 所以我很快记住了分式相乘的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.‎ ‎[师]很好,你能通过这两道题来说一说怎样运用法则进行分式乘法计算吗?‎ ‎(提供例题,让学生讲解)‎ ‎ 1. (1)·;(2)·.‎ ‎ 解:(1)·===;‎ ‎  (2)· ==.‎ 强调:运算结果如不是最简的分式时,一定要进行约分,使运算结果化为最简 ‎,即分子分母没有公因式.‎ ‎[师]你认为进行分式乘法运算的关键步骤是什么?‎ ‎[生]关键步骤是约分. 如果分子分母是多项式,我们还要能正确地将分子、分母因式分解,然后再约分化简.‎ ‎(二)‎ ‎[师生共析]同样我们也可以运用分数的除法法则得到分式的除法,‎ 两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.‎ 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.‎ ‎[师]强调分式的除法实际上是转化为分式的乘法后再进行运算,怎样转化——把除式的分子和分母颠倒位置后再与被除式相乘.因此进行分式除法运算的关键步骤是体现转化的这一步.‎ ‎(鼓励学生讲解教师提供的例题.)‎ ‎2. 计算:‎ ‎  (1)3xy2÷ ;(2)÷.‎ ‎  分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.‎ ‎  解:(1)3xy2÷=3xy2· ==x2;‎ ‎(2)÷ ‎ ‎=×‎ ‎= ‎ ‎=.‎ 四、补充练习 作业P33习题1,P35习题1‎ ‎〖分层练习〗 ‎ ‎1. 计算:(1) (2)÷6xy4‎ ‎2. 计算:(xy-x2)÷‎ ‎〖答案提示〗 ‎ ‎1. 解:(1)=‎ ‎(2)÷6xy4‎ ‎=‎ ‎2. (xy-x2)÷=x(y-x)·=-x(x-y)·=-x2y
查看更多

相关文章

您可能关注的文档