- 2021-10-27 发布 |
- 37.5 KB |
- 37页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
浙教版八年级上册数学同步课件-第1章-1证明
1.3 证明 第1章 三角形的初步认识 复习引入 1.在△ABC中,∠A=80°, ∠B=52°,则∠C= . 3.什么是三角形的内角?其内角和等于多少? 48 ° 三角形相邻两边组成的角叫作三角形的内角, 它们的和是180 °. 2.如图,在△ABC中, ∠A=70°, ∠B=60°, 则∠ACB= ,∠ACD= . A B C D 50 ° 130° B D C AO ● 40 ° 70 ° ? ● ● ● 问题:发现懒羊羊独自在O处游玩后,灰太狼打算用迂 回的方式,先从A前进到C处,然后再折回到B处截住懒 羊羊返回羊村的去路,红太狼则直接在A处拦截懒羊羊, 已知∠BAC=40° , ∠ABC=70°.灰太狼从C处要转多 少度角才能直达B处? 利用“三角形的内角和为180°”来求∠BCD,你会吗? 思考:像∠BCD这样的角有什么特征吗?猜想它的性质. 这节课让我们一起来探讨吧. B D C AO ● 40 ° 70 ° ? ● ● ● 由三角形内角和易得∠BCA=180°-∠A- ∠CBA=70°,所以∠BCD=180°-∠BCA=110°. 思 考 (1)一位同学在钻研数学题时发现: 2+1=3, 2×3+1=7, 2×3×5+1=31, 2×3×5×7+1=211, 于是,他根据上面的结果并利用质数表得出结论: 从质数2开始,排在前面的任意多个质数的乘积加1一定 也是质数.他的结论正确吗? 试一试: 计算一下2×3×5×7×11+1与2×3×5×7×11×13+1, 你发现了什么? 证明的概念1 (2)如果a=b,那么a2=b2.由此我们猜想:当a> b时,a2> b2.这个命题是真命题吗? (3)我们曾经通过计算四边形、五边形、六边形、七边 形等的内角和,得到一个结论:n边形的内角和等于(n-2) ×180°.这个结论正确吗?是否有一个多边形的内角和不满 足这一规律? 不正确,因为3>-5,但是32<(-5)2 . 这是一个正确的结论. 上面的几个例子说明了什么问题? 探讨归纳 通过特殊的事例得到的结论可能正确,也可能不 正确. 定义:根据条件、定义以及基本事实、定理等,经 过演绎推理,来判断一个命题是否正确,这样的推理过 程叫做证明. 例1 证明命题:直角三角形的两个锐角互余. 已知:如图,在△ABC中,∠C=90°. 求证:∠A+∠B=90°. 证明:∵∠A+∠B+∠C=180°(三角形的内角和等于180°), 又∵∠C=90°(已知), ∴∠A+∠B=180°-∠C=90°(等式的性质). 此命题可以用来作为判断其他命题真假的依据,因此我 们把它也作为定理. 方法归纳:演绎推理是研究数学的一个重要方法.除了基 本事实与已知的定理外,等式与不等式的有关性质以及等量代 换也可以作为推理的依据. 典例精析 现在我们就用演绎推理的方法来证明下面的判别方法: 例2 内错角相等,两直线平行. A B l1 l2 l3 (1 )2 )3 已知:如图,直线l3分别与l1、l2交于点A, 点B,且∠1=∠2. 求证:l1∥l2. 你能根据图写出此定 理的已知和求证吗? 注意:如果命题已给出已知和求证,就可以按照所学有关公理、 定理、性质等直接进行证明了.如果要证明一个文字语言 叙述的证明题,而没有给出图形、 已知、求证, 我们要 证明这个命题,必须: 1.首先必须根据命题的要求准确的画出图形,标出字母. 2.再根据要求按照图中所标字母写出数学语言表示的已知 和求证. 证明:∵ ∠1=∠2 ∠3=∠2 ∴ ∠1=∠3 ∴ l1∥l2 l1 l2 l3 A B ) 1 (2 ) 3(已知), (对顶角相等), (等量代换). (同位角相等,两直线平行). 三角形的外角的概念 定义 如图,把△ABC的一边BC延长,得到∠ACD,像这 样,三角形的一边与另一边的延长线组成的角,叫 做三角形的外角. ∠ACD是△ABC的一个外角 CB A D 2 问题1 如图,延长AC到E,∠BCE是不是△ABC的一个 外角?∠DCE是不是△ABC的一个外角? E 在三角形每个顶点处都有两个外角. ∠ACD 与∠BCE为对顶角,∠ACD =∠BCE; CB A D ∠BCE是△ABC的一 个外角,∠DCE不是 △ABC的一个外角. 问题2 如图,∠ACD与∠BCE有什么关系?在三角形的 每个顶点处有多少个外角? A B C 画一画 画出△ABC的所有外角,共有几个呢? 每一个三角形都 有6个外角. 每一个顶点相对 应的外角都有2个, 且这2个角为对顶角. 三角形的外角应具备的条件: ①角的顶点是三角形的顶点; ②角的一边是三角形的一边; ③另一边是三角形中一边的延长线. ∠ACD是△ABC的一个外角, CB A D 每一个三角形都有6个外角. 总结归纳 F A B C D E 如图,∠ BEC是哪个三角形的外角?∠AEC是哪个三 角形的外角?∠EFD是哪个三角形的外角? ∠BEC是△AEC的外角. ∠AEC是△BEC的外角. ∠EFD是△BEF和△DCF 的外角. 练一练 三角形的外角 A C B D 相邻的内角 不相邻的内角 三角形的外角的性质 问题1 如图,△ABC的外角∠BCD与其相邻的内角 ∠ACB有什么关系? ∠BCD与∠ACB互补. 3 问题2 如图,△ABC的外角∠BCD与其不相邻的两 内角(∠A、∠B)有什么关系? 三角形的外角 A C B D 相邻的内角 不相邻的内角 ∵∠A+∠B+∠ACB=180°∠BCD+∠ACB=180°, ∴∠A+∠B=∠BCD. 你能用作平行线的方 法证明此结论吗? D 证明:过C作CE∥AB, A B C 12 ∴∠1= ∠B, (两直线平行,同位角相等) ∠2= ∠A , (两直线平行,内错角相等) ∴∠ACD= ∠1+ ∠2= ∠A+ ∠B. E 已知:如图,△ABC,求证:∠ACD=∠A+∠B. 验证结论 三角形内角和定理的推论 A B C D ( ( ( 三角形的外角等于与它不相邻的两个内角的和. 应用格式: ∵ ∠ACD是△ABC的一个外角 ∴ ∠ACD= ∠A+ ∠B. 知识要点 练一练:说出下列图形中∠1和∠2的度数: A B C D ( ( ( 80 ° 60 ° ( 21 (1) A B C ( ( ( ( 2 1 50 ° 32 ° (2) ∠1=40 °, ∠2=140 ° ∠1=18 °, ∠2=130 ° 例1 如图,∠A=42°,∠ABD=28°,∠ACE=18°,求 ∠BFC的度数. ∵ ∠BEC是△AEC的一个外角, ∴ ∠BEC= ∠A+ ∠ACE, ∵∠A=42° ,∠ACE=18°, ∴ ∠BEC=60°. ∵ ∠BFC是△BEF的一个外角, ∴ ∠BFC= ∠ABD+ ∠BEF, ∵ ∠ABD=28°, ∠BEC=60°, ∴ ∠BFC=88°. 解: F A C D E B 典例精析 例2 如图,P为△ABC内一点,∠BPC=150°, ∠ABP=20°,∠ACP=30°,求∠A的度数. 解析:延长BP交AC于点E,构造三角形的外角,再 利用外角的性质即可求出∠A的度数. E 解:延长BP交AC于点E, 则∠BPC、∠PEC分别为△PCE、△ABE的外角, ∴∠BPC=∠PEC+∠PCE, ∠PEC=∠ABE+∠A, ∴∠PEC=∠BPC-∠PCE =150°-30°=120°. ∴∠A=∠PEC-∠ABE=120°-20°=100°. 【变式题】 (一题多解)如图,∠A=51°,∠B=20°, ∠C=30°,求∠BDC的度数. A B C D ( ( ( 51 ° 20 ° 30 ° 思路点拨:添加适当的辅助线将四边形问题转化为 三角形问题. A B C D ( ( 20 ° 30 ° 解法一:连接AD并延长至点E. 在△ABD中,∠1+∠ABD=∠3, 在△ACD中,∠2+∠ACD=∠4. 因为∠BDC=∠3+∠4, ∠BAC=∠1+∠2, 所以∠BDC=∠BAC+∠ABD+∠ACD =51° +20°+30°=101°. E ) ) 1 2 ) 3 ) 4 你发现了什 么结论? A B C D ( ( ( 51 ° 20 ° 30 ° E ) 1 解法二:延长BD交AC于点E. ∠1=∠ABE+∠BAE, ∠BDC=∠1+∠ECD. ∴∠BDC=∠BAC+∠ABD+∠ACD =51° +20°+30°=101°. 解法三:连接延长CD交AB于点F(解题过程同解法二). ) 2 F 总结:解题的关键是正确的构造三角形,利用三角形外角的性 质及转化的思想,把未知角与已知角联系起来求解. 如图 ,试比较∠2 、∠1的大小; 如图 ,试比较∠3 、∠2、 ∠1的大小. 1 2 图1 图2 解:∵∠2=∠1+∠B, ∴∠2>∠1. 解:∵∠2=∠1+∠B, ∠3=∠2+∠D, ∴∠3>∠2>∠1. 拓展探究 三角形的 外角大于 与它不相 邻的内角. 三角形的外角和 例3 如图, ∠BAE、∠CBF、∠ACD是△ABC的三个外角,它 们的和是多少? 解:由三角形的一个外角等于与它不 相邻的两个内角的和,得 ∠BAE= ∠2+ ∠3, ∠CBF= ∠1+ ∠3, ∠ACD= ∠1+ ∠2. 又知∠1+ ∠2+ ∠3=180 °, 所以∠BAE+ ∠CBF+ ∠ACD =2(∠1+ ∠2+ ∠3)=360 °. A B C E F D ( ( ( ( ( ( 2 1 3 你还有其他 解法吗? 4 解法二:如图,∠BAE+∠1=180 °, ① ∠CBF +∠2=180 ° ,② ∠ACD +∠3=180 ° .③ 又知∠1+ ∠2+ ∠3=180 °, ①+ ②+ ③得 ∠BAE+ ∠CBF+ ∠ACD+ (∠1+ ∠2+ ∠3)=540 °, 所以∠BAE+ ∠CBF+ ∠ACD=540 °-180°=360°. A B C E F D ( ( ( ( ( ( 2 1 3 解法三:过A作AM平行于BC, 所以∠3= ∠4 B C 1 2 3 4A ∠2= ∠BAM, 所以 ∠1+ ∠2+ ∠3= ∠1+ ∠4+ ∠BAM=360°. M 所以∠2+ ∠ 3= ∠ 4+∠BAM, 结论:三角形的外角和等于360°. 思考:你能总结出三角形的外角和的数量关系吗? D E F 1.判断下列命题的对错. (1)三角形的外角和是指三角形的所有外角的和. ( ) (2)三角形的外角和等于它的内角和的2倍. ( ) (3)三角形的一个外角等于两个内角的和. ( ) (4)三角形的一个外角等于与它不相邻的两个内角的和.( ) (5)三角形的一个外角大于任何一个内角. ( ) (6)三角形的一个内角小于任何一个与它不相邻的外角.( ) 2.如图,AB//CD,∠A=37°, ∠C=63°,那么 ∠F等于 ( ) F A BE C D A.26° B.63° C.37° D.60° A 3.(1)如图,∠BDC是________ 的外角,也是 的外角; (2)若∠B=45 °, ∠BAE=36 °, ∠BCE=20 °,试求∠AEC的度数. A B C D E△ADE △ADC 解:根据三角形外角的性质有 ∠ADC= ∠B+ ∠BCE, ∠AEC= ∠ADC+ ∠BAE. 所以∠AEC= ∠B+∠BCE+ ∠BAE =45 °+20 °+36 °=101 °. 解:因为∠ADC是△ABD的外角, 4 .如图,D是△ABC的BC边上一点,∠B=∠BAD, ∠ADC=80°,∠BAC=70°,求: (1)∠B 的度数;(2)∠C的度数. 在△ABC中, ∠B+∠BAC+∠C=180°, ∠C=180º-40º-70º=70°. 所以∠ADC=∠B+∠BAD=80°. 又因为∠B=∠BAD, A B180 40 ,2B 所以 CD A B C D E 1 2 F G 解:∵∠1是△FBE的外角, ∴∠1=∠B+ ∠E, 同理∠2=∠A+∠D. 在△CFG中, ∠C+∠1+∠2=180º, ∴∠A+ ∠ B+∠C+ ∠ D+∠E = 180º. 5.如图,求∠A+ ∠B+ ∠C+ ∠D+ ∠E的度数. 能力提升: 1 2 3 B A C P N M D E F 6.如图,试求出∠A+∠B+∠C+∠D+∠E+∠F =________.360° 三角形 的外角 定 义 角一边必须是三角形的一边,另一 边必须是三角形另一边的延长线 性 质 三角形的一个外角等于与它不相 邻的两个内角的和 三 角 形 的 外 角 和 三角形的外角和等于360 °查看更多