- 2021-10-26 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级下数学课件八年级下册数学课件《三角形的中位线》 北师大版 (10)_北师大版
A B C D E 美丽校园 小明同学给出了如下方案: 若D,E分别是AB,AC的中点,则测出DE的长,就 可以求出湖边两点BC的长.你知道为什么吗? 出谋划策 第三节 三角形的中位线 西电附中数学组 李莎 连接三角形两边中点的线段叫三角形的中位线 三角形有三条中位线ED F A CB 定义 怎样将一张三角形纸片剪成两部分, 使这两部分能拼成一个平行四边形? 合作探究1 A B C D E F 三角形的中位线与第三边有什么关系? 三角形的中位线平行于第三边,并且等于第三边的 一半. 求证:DE ∥ BC,且 BC 2 1 DE D。 E A B C 已知:在△ABC 中,DE是△ABC 的中位线. 三角形的中位线平行于第三边,且等于第三边的一 半. 几何语言表述: ∵DE是△ABC的中位线 C ED B A BC 2 1 //DE 定理 1.如图,点D、E、F分别是△ABC 中AB、AC、BC的中点. (1)若∠ADE=40°,则∠B=____; (2)如果DE=3,那么BC=________; (3)如果AB=7,BC=6,AC=5,那么△DEF的周长=______; (4)如果BC=a,AC=b,AB=c, 那么△DEF的周长= (5)如果△ABC的面积是16cm2,那么 △DEF的面积=_____cm2; D。 E 。 F A B C 40° 9 4 2 cba 6 课内及时评价 A B C D E 通过刚才的学习,我们探索并发现连接任 意三角形三边中点所得的三角形的部分规 律,对于任意四边形,连接四边中点所得 到的四边形又有何规律呢?请你动手画一 画! A B C D E F G H 合作探究2 证明:如图,连接AC ∵EF是△ABC的中位线 AC 2 1 //EF 同理得: AC 2 1 //GH EF//GH ∴四边形EFGH是平行四边形 已知: 如图,DE,EF是⊿ABC的两条中位线. 求证:四边形BFED是平行四边形. D B CF E A 思考练习 如图,DE是⊿ABC的中位线,AF是BC边上的中线,DE和 AF交于点O.求证:DE与AF互相平分. F ED CB A O 3、已知:如图,△ABC是锐角三角形。分别以AB, AC为边向外侧作等边三角形ABM和等边三角形CAN, D,E,F分别是MB,BC,CN的中点,连结DE,FE, 求证:DE=FE A N M F E D CB 拓展延伸 1.三角线的中位线定义 2.三角线中位线定理 (1)表示位置关系------平行于第三边; (2)表示数量关系------等于第三边的一半. 3.三角形中位线应用 小结 • P152 习题6.6 第1题、第3题。 作业 3、已知:如图,△ABC是锐角三角形。分别以AB, AC为边向外侧作等边三角形ABM和等边三角形CAN, D,E,F分别是MB,BC,CN的中点,连结DE,FE, 求证:DE=FE A N M F E D CB 课外思考 数学来源于生活,实践于生活查看更多