- 2022-04-01 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级下数学课件菱形的性质与判定_鲁教版
第六章特殊的平行四边形1、菱形的性质及判定(1) 第六章特殊的平行四边形1、菱形的性质及判定(1) 证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据题意,画出图形;(3)结合图形,用符号语言写出“已知”和“求证”;(4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因”.);(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表达过程是否正确,完善.回顾与思考 定理:平行四边形的对边相等.证明后的结论,以后可以直接运用.BDCA∵四边形ABCD是平行四边形.∴AB=CD,BC=DA.定理:平行四边形的对角相等.∵四边形ABCD是平行四边形.∴∠A=∠C,∠B=∠D.定理:平行四边形的对角线互相平分.∵四边形ABCD是平行四边形.∴CO=AO,BO=DO.BDCAO定理:夹在两条平等线间的平等线段相等.∵MN∥PQ,AB∥CD,∴AB=CD.BDCAMNPQ回顾与思考 定理:两组对边分别相等的四边形是平行四边形.定理:一组对边平行且相等的四边形是平行四边形.定理:对角线互相平分的四边形是平行四边形.定理:两组对角分别相等的四边形是平行四边形的.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.BDCABDCAO∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形.回顾与思考 四边形之间有何关系?特殊的平行四边形之间呢?还记得它们与平行四边形的关系吗?能用一张图来表示它们之间的关系吗?四边形平行四边形矩形菱形正方形两组对边分别平行有一个角是直角有一组邻边相等有一个角是直角有一组邻边相等一组对边平行另一组对边不平行梯形两腰相等等腰梯形腰与底垂直直角梯形四边形之间的关系 定理:菱形的四条边都相等.已知:如图,四边形ABCD是菱形.分析:由菱形的定义,利用平行四边形性质可使问题得证.证明:∵四边形ABCD是菱形,∴AB=AD,∴AB=CD,AD=BC.求证:AB=BC=CD=DA.∴AB=BC=CD=AD.CBDA∵四边形ABCD是平行四边形菱形的性质 定理:菱形的两条对角线互相垂直,并且每条对角线平分一组对角.已知:如图,AC,BD是菱形ABCD的两条对角线,AC,BD相交于点O.求证:(1).AC⊥BD;(2).AC平分∠BAD和∠BCD,BD平分∠ADC和∠ABC.证明:(1)∵四边形ABCD是菱形,∴AD=CD,AO=CO.分析:根据平行四边形对角线互相平分和等腰三角形“三线合一”来证明.∵DO=DO,∴△AOD≌△COD(SSS).∴∠AOD=∠COD=900.DBCAO∴AC⊥BD.(2)∵AD=AB,DA=DC,AC⊥BD;∴AC平分∠BAD和∠BCD,BD平分∠ADC和∠ABC.菱形的性质 已知:如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.求:(1).对角线AC的长度;(2).菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,=2×△ABD的面积∴∠AED=900,(2)菱形ABCD的面积=△ABD的面积+△CBD的面积∴AC=2AE=2×12=24(cm).DBCAE菱形的性质 定理:四条边都相等的四边形是菱形.已知:如图,在四边形ABCD中,AB=BC=CD=DA..分析:利用菱形定义和两组对边分别相等的四边形是平行四边形,可使问题得证.证明:∵AB=BC=CD=DA,∴AB=CD,BC=DA.∴四边形ABCD是平行四边形..求证:四边形ABCD是菱形.∵AB=AD,∴四边形ABCD是菱形.CBDA菱形的判定 定理:对角线互相垂直的平行四边形是菱形.已知:如图,在□ABCD中,对角线AC⊥BD.求证:四边形ABCD是菱形.分析:要证明□ABCD是菱形,就要证明有一组邻边相等即可.证明:∴AO=CO.∵AC⊥BD,∴DA=DC.∵四边形ABCD是平行四边形.∴四边形ABCD是菱形.DBCAO菱形的判定 定理:菱形的四条边都相等.定理:菱形的两条对角线互相垂直,并且每条对角线平分一组对角.∵四边形ABCD是菱形,∴AB=BC=CD=AD.∵AC,BD是菱形ABCD的两条对角线.∴AC⊥BD,AC平分∠BAD和∠BCD,BD平分∠ADC和∠ABC.CBDADBCAO回顾反思 定理:四条边都相等的四边形是菱形.定理:对角线互相垂直的平行四边形是菱形.在四边形ABCD中,∵AB=BC=CD=AD,∴四边形ABCD是菱形.∵AC,BD是□ABCD的两条对角线,AC⊥BD.∴四边形ABCD是菱形.CBDADBCAO回顾思考 独立作业P86习题8.51,2,3题查看更多