八年级下数学课件八年级下册数学课件《一元一次不等式》 北师大版 (4)_北师大版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

八年级下数学课件八年级下册数学课件《一元一次不等式》 北师大版 (4)_北师大版

4一元一次不等式 1.经历一元一次不等式概念的形成过程;2.掌握一元一次不等式的解法,会解简单的一元一次不等式,并能在数轴上将其解集表示出来.3.初步认识一元一次不等式的应用价值,发展分析问题、解决问题的能力. 【温故而知新】1.什么叫一元一次方程?答:只含一个未知数、并且未知数的最高次数是1的方程.2.一元一次方程是一个等式,请问一元一次方程的(等号)两边都是怎样的式子?答:一元一次方程的(等号)两边都是整式、只含一个未知数,并且未知数的最高次数是1. 观察下列不等式:(1)2x-2.5≥15;(2)x≤8.75;(3)x<4;(4)5+3x>240.这些不等式有哪些共同特点?共同特点:这些不等式的两边都是整式,只含一个未知数、并且未知数的最高次数是1. 你能给它们起个名字吗?一元一次不等式【定义】不等式的左右两边都是整式,只含一个未知数、并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式. ✓✓✕✕下列不等式中,哪些是一元一次不等式?(1)3x+2>x–1(2)5x+3<0(3)+3<5x–1(4)x(x–1)<2x【动手做一做】 方法二:移项,得-x-2x=6-3合并同类项,得-3x=3两边都除以-3,得x=-1.例1解方程3-x=2x+6方法一:移项,得3-6=2x+x合并同类项,得-3=3x两边都除以3,得-1=x即x=-1. 例1解不等式3-x<2x+6,并把它的解集表示在数轴上.【解析】两边都加上x,得3-x+x<2x+6+x合并同类项,得3<3x+6两边都加上-6,得3-6<3x+6-6合并同类项,得-3<3x两边都除以3,得-1-1.2314560-1-2【例题】 例2解不等式,并把它的解集表示在数轴上.【解析】去分母,得即3(x-2)≥2(7-x)去括号,得3x-6≥14-2x移项、合并同类项,得5x≥20两边都除以5,得x≥42314560-1-2 解一元一次不等式和解一元一次方程类似,有去分母去括号移项合并同类项系数化为1等步骤.区别在哪里?在去分母和系数化为1的两步中,要特别注意不等式的两边都乘(或除以)同一个负数时,不等号的方向必须改变.【归纳提升】 【归纳提升】解一元一次不等式的注意事项1.在运用性质3时要特别注意:不等式两边都乘或除以同一个负数时,要改变不等号的方向.2.要注意区分“大于”“不大于”“小于”“不小于”等数学语言的使用,并把这些表示不等关系的语言用数学符号准确地表达出来.3.在数轴上表示解集应注意的问题:方向、空心或实心. 3.解不等式,并把它的解集在数轴上表示出来.【解析】去分母,得4(2x-1)-2(10x+1)≥15x-60.去括号,得8x-4-20x-2≥15x-60移项、合并同类项,得-27x≥-54系数化为1,得x≤2.在数轴上表示解集如图所示: 通过本课时的学习,需要我们掌握:1.一元一次不等式的概念;2.一元一次不等式的解法与一元一次方程的解法类似,(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1(有时不等号的方向会改变) 一个有信念者所开发出的力量,大于99个只有兴趣者。
查看更多

相关文章

您可能关注的文档