- 2022-04-01 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级上数学课件- 15-3 分式方程 课件(共15张PPT)_人教新课标
分式方程 课堂引入:(1)什么叫做一元一次方程?(2)一元一次方程的解法?(3)解方程解:解得 4、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?解:设江水的流速为v千米/时,根据题意得 总结:像这样分母中含未知数的方程叫做分式方程注意:分母是否含有末知数是区别分式方程与整式方程的关键。 应用举例: 试解分式方程: 解 3、解下列方程: 解分式方程的基本思想:把分式方程“转化”为整式方程,再利用整式方程的解法求解解分式方程的方法:在方程的两边同乘最简公分母,就可约去分母,化成整式方程 解分式方程的解的两种情况:①所得的根是原方程的根、②所得的根不是原方程的根原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零验根:把求得的根代入最简公分母,看它的值是否为零。使最简公分母值为零的根是增根。 解分式方程的一般步骤:1.在方程的两边都乘最简公分母,约去分母,化成整式方程;――化整2.解这个整式方程;――解整3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。——验根 随堂练习:解方程 解分式方程的基本思想:把分式方程“转化”为整式方程,再利用整式方程的解法求解解分式方程的方法:在方程的两边同乘最简公分母,就可约去分母,化成整式方程这节课你学会了什么? 解分式方程的解的两种情况:①所得的根是原方程的根、②所得的根不是原方程的根原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零验根:把求得的根代入最简公分母,看它的值是否为零。使最简公分母值为零的根是增根。 解分式方程的一般步骤:1.在方程的两边都乘最简公分母,约去分母,化成整式方程;――化整2.解这个整式方程;――解整3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。——验根查看更多