精品人教版八年级数学上册第十四章143因式分解

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

精品人教版八年级数学上册第十四章143因式分解

第十四章整式的乘法与因式分解14.3因式分解第1课时 1.理解因式分解的意义和概念及其与整式乘法的区别和联系.(重点)2.理解并掌握提公因式法并能熟练地运用提公因式法分解因式.(难点)学习目标 导入新课问题引入如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?abcm方法一:m(a+b+c)方法二:ma+mb+mcm(a+b+c)=ma+mb+mc整式乘法? 1.运用整式乘法法则或公式填空:(1)m(a+b+c)=;(2)(x+1)(x-1)=;(3)(a+b)2=.ma+mb+mcx2-1a2+2ab+b2讲授新课合作探究2.根据等式的性质填空:(1)ma+mb+mc=()()(2)x2-1=()()(3)a2+2ab+b2=()2ma+b+cx+1x-1a+b都是多项式化为几个整式的积的形式比一比,这些式子有什么共同点?因式分解 定义:把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式. x2-1(x+1)(x-1)因式分解整式乘法x2-1=(x+1)(x-1)等式的特征:左边是多项式,右边是几个整式的乘积想一想:整式乘法与因式分解有什么关系?是互为相反的变形,即 典例精析例1下列从左到右的变形中是因式分解的有()①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;④x2-9y2=(x+3y)(x-3y).A.1个B.2个C.3个D.4个B方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式. 在下列等式中,从左到右的变形是因式分解的有,不是的,请说明为什么?①②③④⑤⑥③⑥辨一辨:am+bm+c=m(a+b)+c24x2y=3x·8xyx2-1=(x+1)(x-1)(2x+1)2=4x2+4x+1x2+x=x2(1+)2x+4y+6z=2(x+2y+3z)最后不是积的运算因式分解的对象是多项式,是整式乘法每个因式必须是整式 pa+pb+pc多项式中各项都含有的相同因式,叫作这个多项式的公因式.相同因式p问题1观察下列多项式,它们有什么共同特点?合作探究x2+x相同因式x用提公因式法分解因式 一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.(a+b+c)pa+pb+pcp= 找3x2–6xy的公因式.系数:最大公约数3字母:相同的字母x所以公因式是3x指数:相同字母的最低次数1问题2如何确定一个多项式的公因式? 正确找出多项式的公因式的步骤:3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.1.定系数:公因式的系数是多项式各项系数的最大公约数.2.定字母:字母取多项式各项中都含有的相同的字母. 找一找:下列各多项式的公因式是什么?3aa22(m+n)3mn-2xy(1)3x+6y(2)ab-2ac(3)a2-a3(4)4(m+n)2+2(m+n)(5)9m2n-6mn(6)-6x2y-8xy2 典例精析(1)8a3b2+12ab3c;例2把下列各式分解因式分析:提公因式法步骤(分两步)第一步:找出公因式;第二步:提取公因式,即将多项式化为两个因式的乘积.(2)2a(b+c)-3(b+c).公因式既可以是一个单项式的形式,也可以是一个多项式的形式.整体思想是数学中一种重要而且常用的思想方法. 解:(1)8a3b2+12ab3c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc);如果提出公因式4ab,另一个因式是否还有公式?另一个因式将是2a2b+3b2c,它还有公因式是b.(2)2a(b+c)-3(b+c)=(b+c)(2a-3).如何检查因式分解是否正确?做整式乘法运算. 因式分解:(1)3a3c2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.针对训练(3)原式=(a+b)(a-b-1).解:(1)原式=3ac(a2c+4b3);(2)原式=(2a-3)(b+c); 把12x2y+18xy2分解因式.解:原式=3xy(4x+6y).错误公因式没有提尽,还可以提出公因式2注意:公因式要提尽.正解:原式=6xy(2x+3y).小明的解法有误吗? 当多项式的某一项和公因式相同时,提公因式后剩余的项是1.错误注意:某项提出莫漏1.解:原式=x(3x-6y).把3x2-6xy+x分解因式.正确解:原式=3x·x-6y·x+1·x=x(3x-6y+1)小亮的解法有误吗? 提出负号时括号里的项没变号错误把-x2+xy-xz分解因式.解:原式=-x(x+y-z).注意:首项有负常提负.正确解:原式=-(x2-xy+xz)=-x(x-y+z)小华的解法有误吗? 例3计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.(2)原式=20.16×(29+72+13-14)=2016.=13×20=260;解:(1)原式=3×13×37-13×91=13×(3×37-91)方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便. 例4已知a+b=7,ab=4,求a2b+ab2的值.∴原式=ab(a+b)=4×7=28.解:∵a+b=7,ab=4,方法总结:含a±b,ab的求值题,通常要将所求代数式进行因式分解,将其变形为能用a±b和ab表示的式子,然后将a±b,ab的值整体带入即可. 1.多项式15m3n2+5m2n-20m2n3的公因式是(  )A.5mnB.5m2n2C.5m2nD.5mn22.把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是(  )A.x+1B.2xC.x+2D.x+33.下列多项式的分解因式,正确的是(  )A.12xyz-9x2y2=3xyz(4-3xyz)B.3a2y-3ay+6y=3y(a2-a+2)C.-x2+xy-xz=-x(x2+y-z)D.a2b+5ab-b=b(a2+5a)B当堂练习CD 4.把下列各式分解因式:(1)8m2n+2mn=_____________;(2)12xyz-9x2y2=_____________;(3)p(a2+b2)-q(a2+b2)=_____________;(4)-x3y3-x2y2-xy=_______________;2mn(4m+1)3xy(4z-3xy)(a2+b2)(p-q)-xy(x2y2+xy+1)(5)(x-y)2+y(y-x)=_____________.(y-x)(2y-x)5.若9a2(x-y)2-3a(y-x)3=M·(3a+x-y),则M等于_____________.3a(x-y)2 6.简便计算:(1)1.992+1.99×0.01;(2)20132+2013-20142;(3)(-2)101+(-2)100.(2)原式=2013(2013+1)-20142=2013×2014-20142=2014×(2013-2014)=-2014.解:(1)原式=1.99(1.99+0.01)=3.98;(3)原式=(-2)100×(-2+1)=2100×(-1)=-2100. 解:(1)2x2y+xy2=xy(2x+y)=3×4=12.(2)原式=(2x+1)[(2x+1)-(2x-1)]=(2x+1)(2x+1-2x+1)=2(2x+1).7.(1)已知:2x+y=4,xy=3,求代数式2x2y+xy2的值.(2)化简求值:(2x+1)2-(2x+1)(2x-1),其中x=.将x=代入上式,得原式=4. 8.△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?并说明理由.拓展提升∴△ABC是等腰三角形.解:整理a+2ab=c+2bc得,a+2ab-c-2bc=0,(a-c)+2b(a-c)=0,(a-c)(1+2b)=0,∴a-c=0或1+2b=0,即a=c或b=-0.5(舍去), 课堂小结因式分解定义am+bm+mc=m(a+b+c)方法提公因式法公式法确定公因式的方法:三定,即定系数;定字母;定指数分两步:第一步找公因式;第二步提公因式(下节课学习)注意1.分解因式是一种恒等变形;2.公因式:要提尽;3.不要漏项;4.提负号,要注意变号 第十四章整式的乘法与因式分解14.3因式分解第2课时 1.探索并运用平方差公式进行因式分解,体会转化思想.(重点)2.能会综合运用提公因式法和平方差公式对多项式进行因式分解.(难点)学习目标 导入新课a米b米b米a米(a-b)情境引入如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?a2-b2=(a+b)(a-b) 讲授新课想一想:多项式a2-b2有什么特点?你能将它分解因式吗?是a,b两数的平方差的形式))((baba-+=22ba-))((22bababa-+=-整式乘法因式分解两个数的平方差,等于这两个数的和与这两个数的差的乘积.平方差公式:用平方差公式进行因式分解 √√××辨一辨:下列多项式能否用平方差公式来分解因式,为什么?√√★符合平方差的形式的多项式才能用平方差公式进行因式分解,即能写成:()2-()2的形式.两数是平方,减号在中央.(1)x2+y2(2)x2-y2(3)-x2-y2-(x2+y2)y2-x2(4)-x2+y2(5)x2-25y2(x+5y)(x-5y)(6)m2-1(m+1)(m-1) 例1分解因式:aabb(+)(-)a2-b2=解:(1)原式=2x32x2x33(2)原式整体思想ab典例精析 方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解. 分解因式:(1)(a+b)2-4a2;(2)9(m+n)2-(m-n)2.针对训练=(2m+4n)(4m+2n)解:(1)原式=(a+b-2a)(a+b+2a)=(b-a)(3a+b);(2)原式=(3m+3n-m+n)(3m+3n+m-n)=4(m+2n)(2m+n).若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解. 当场编题,考考你!))((22bababa-+=-20152-20142=(2mn)2-(3xy)2=(x+z)2-(y+p)2= 例2分解因式:解:(1)原式=(x2)2-(y2)2=(x2+y2)(x2-y2)分解因式后,一定要检查是否还有能继续分解的因式,若有,则需继续分解.=(x2+y2)(x+y)(x-y);(2)原式=ab(a2-1)分解因式时,一般先用提公因式法进行分解,然后再用公式法.最后进行检查.=ab(a+1)(a-1). 方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.注意分解因式必须进行到每一个多项式都不能再分解因式为止. 分解因式:(1)5m2a4-5m2b4;(2)a2-4b2-a-2b.针对训练=(a+2b)(a-2b-1).=5m2(a2+b2)(a+b)(a-b);解:(1)原式=5m2(a4-b4)=5m2(a2+b2)(a2-b2)(2)原式=(a2-4b2)-(a+2b)=(a+2b)(a-2b)-(a+2b) 例3已知x2-y2=-2,x+y=1,求x-y,x,y的值.∴x-y=-2②.解:∵x2-y2=(x+y)(x-y)=-2,x+y=1①,联立①②组成二元一次方程组,解得 方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值. 例4计算下列各题:(1)1012-992;(2)53.52×4-46.52×4.解:(1)原式=(101+99)(101-99)=400;(2)原式=4(53.52-46.52)=4(53.5+46.5)(53.5-46.5)=4×100×7=2800.方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化. 例5求证:当n为整数时,多项式(2n+1)2-(2n-1)2一定能被8整除.即多项式(2n+1)2-(2n-1)2一定能被8整除.证明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n•2=8n,∵n为整数,∴8n被8整除,方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除. 1.下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9当堂练习D2.分解因式(2x+3)2-x2的结果是(  )A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)D3.若a+b=3,a-b=7,则b2-a2的值为(  )A.-21B.21C.-10D.10A 4.把下列各式分解因式:(1)16a2-9b2=_________________;(2)(a+b)2-(a-b)2=_________________;(3)9xy3-36x3y=_________________;(4)-a4+16=_________________.(4a+3b)(4a-3b)4ab9xy(y+2x)(y-2x)(4+a2)(2+a)(2-a)5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值是_____________.4 6.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.原式=-40×5=-200.解:原式=(m+2n+3m-n)(m+2n-3m+n)=(4m+n)(3n-2m)=-(4m+n)(2m-3n),当4m+n=40,2m-3n=5时, 7.如图,在边长为6.8cm正方形钢板上,挖去4个边长为1.6cm的小正方形,求剩余部分的面积.解:根据题意,得6.82-4×1.62=6.82-(2×1.6)2=6.82-3.22=(6.8+3.2)(6.8-3.2)=10×3.6=36(cm2)答:剩余部分的面积为36cm2. 8.(1)992-1能否被100整除吗?解:(1)因为992-1=(99+1)(99-1)=100×98,所以,(2n+1)2-25能被4整除.(2)n为整数,(2n+1)2-25能否被4整除?所以992-1能否被100整除.(2)原式=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)=2(n+3)×2(n-2)=4(n+3)(n-2). 课堂小结平方差公式分解因式公式a2-b2=(a+b)(a-b)步骤一提:公因式;二套:公式;三查:多项式的因式分解有没有分解到不能再分解为止. 第十四章整式的乘法与因式分解14.3因式分解第3课时 1.理解并掌握用完全平方公式分解因式.(重点)2.灵活应用各种方法分解因式,并能利用因式分解进行计算.(难点)学习目标 导入新课复习引入1.因式分解:把一个多项式转化为几个整式的积的形式.2.我们已经学过哪些因式分解的方法?1.提公因式法2.平方差公式a2-b2=(a+b)(a-b) 讲授新课你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?同学们拼出图形为:aabbabababa²b²ab用完全平方公式分解因式 这个大正方形的面积可以怎么求?a2+2ab+b2(a+b)2=ababa²ababb²(a+b)2a2+2ab+b2=将上面的等式倒过来看,能得到: a2+2ab+b2a2-2ab+b2我们把a²+2ab+b²和a²-2ab+b²这样的式子叫作完全平方式.观察这两个式子:(1)每个多项式有几项?(3)中间项和第一项,第三项有什么关系?(2)每个多项式的第一项和第三项有什么特征?三项这两项都是数或式的平方,并且符号相同是第一项和第三项底数的积的±2倍 完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.完全平方式: 简记口诀:首平方,尾平方,首尾两倍在中央.凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.2ab+b2±=(a±b)²a2首2+尾2±2×首×尾(首±尾)2两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方. 3.a²+4ab+4b²=()²+2·()·()+()²=()²2.m²-6m+9=()²-2·()·()+()²=()²1.x²+4x+4=()²+2·()·()+()²=()²x2x+2aa2ba+2b2b对照a²±2ab+b²=(a±b)²,填空:mm-33x2m3 下列各式是不是完全平方式?(1)a2-4a+4;(2)1+4a²;(3)4b2+4b-1;(4)a2+ab+b2;(5)x2+x+0.25.是(2)因为它只有两项;不是(3)4b²与-1的符号不统一;不是分析:不是是(4)因为ab不是a与b的积的2倍. 例1如果x2-6x+N是一个完全平方式,那么N是()A.11B.9C.-11D.-9B解析:根据完全平方式的特征,中间项-6x=2x×(-3),故可知N=(-3)2=9.变式训练如果x2-mx+16是一个完全平方式,那么m的值为________.解析:∵16=(±4)2,故-m=2×(±4),m=±8.±8典例精析 方法总结:本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解. 例2分解因式:(1)16x2+24x+9;(2)-x2+4xy-4y2.分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+(3)2.2ab+b2a2(2)中首项有负号,一般先利用添括号法则,将其变形为-(x2-4xy+4y2),然后再利用公式分解因式. 解:(1)16x2+24x+9=(4x+3)2;=(4x)2+2·4x·3+(3)2(2)-x2+4xy-4y2=-(x2-4xy+4y2)=-(x-2y)2. 例3把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)(a+b)2-12(a+b)+36.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2;分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b看成一个整体,设a+b=m,则原式化为m2-12m+36.(2)原式=(a+b)2-2·(a+b)·6+62=(a+b-6)2. 利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法. 因式分解:(1)-3a2x2+24a2x-48a2;(2)(a2+4)2-16a2.针对训练=(a2+4+4a)(a2+4-4a)解:(1)原式=-3a2(x2-8x+16)=-3a2(x-4)2;(2)原式=(a2+4)2-(4a)2=(a+2)2(a-2)2.有公因式要先提公因式要检查每一个多项式的因式,看能否继续分解. 例4把下列完全平方公式分解因式:(1)1002-2×100×99+99²;(2)342+34×32+162.解:(1)原式=(100-99)²(2)原式=(34+16)2本题利用完全平方公式分解因式,可以简化计算,=1.=2500. 例5已知x2-4x+y2-10y+29=0,求x2y2+2xy+1的值.=112=121.解:∵x2-4x+y2-10y+29=0,∴(x-2)2+(y-5)2=0.∵(x-2)2≥0,(y-5)2≥0,∴x-2=0,y-5=0,∴x=2,y=5,∴x2y2+2xy+1=(xy+1)2几个非负数的和为0,则这几个非负数都为0. 方法总结:此类问题一般情况是通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答问题. 例6已知a,b,c分别是△ABC三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.∴△ABC是等边三角形.解:由a2+2b2+c2-2b(a+c)=0,得a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c, 当堂练习1.下列四个多项式中,能因式分解的是()A.a2+1B.a2-6a+9C.x2+5yD.x2-5y2.把多项式4x2y-4xy2-x3分解因式的结果是()A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)3.若m=2n+1,则m2-4mn+4n2的值是________.BB14.若关于x的多项式x2-8x+m2是完全平方式,则m的值为___________.±4 5.把下列多项式因式分解.(1)x2-12x+36;(2)4(2a+b)2-4(2a+b)+1;(3)y2+2y+1-x2;(2)原式=[2(2a+b)]²-2·2(2a+b)·1+(1)²=(4a+2b-1)2;解:(1)原式=x2-2·x·6+(6)2=(x-6)2;(3)原式=(y+1)²-x²=(y+1+x)(y+1-x). (2)原式6.计算:(1)38.92-2×38.9×48.9+48.92.解:(1)原式=(38.9-48.9)2=100. 7.分解因式:(1)4x2+4x+1;(2)小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.x2-2x+3.(2)原式=(x2-6x+9)=(x-3)2解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2小聪:小明:×× 8.(1)已知a-b=3,求a(a-2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.原式=2×52=50.解:(1)原式=a2-2ab+b2=(a-b)2.当a-b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2.当ab=2,a+b=5时, 课堂小结完全平方公式分解因式公式a2±2ab+b2=(a±b)2特点(1)要求多项式有三项.(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.
查看更多

相关文章

您可能关注的文档