- 2021-10-26 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级下册数学教案2-2-2 第1课时 完全平方公式 湘教版
2.2.2 完全平方公式 第1课时 完全平方公式 1.能根据多项式的乘法推导出完全平方公式;(重点) 2.理解并掌握完全平方公式,并能进行计算;(重点、难点)[来源:Z.xx.k.Com] 3.了解完全平方公式的几何背景. 一、情境导入 计算: (1)(x+1)2; (2)(x-1)2; (3)(a+b)2; (4)(a-b)2. 由上述计算,你发现了什么结论? 二、合作探究 探究点:完全平方公式[来源:学_科_网Z_X_X_K] 【类型一】 直接运用完全平方公式进行计算 利用完全平方公式计算: (1)(5-a)2; (2)(-3m-4n)2; (3)(-3a+b)2. 解析:直接运用完全平方公式进行计算即可. 解:(1)(5-a)2=25-10a+a2;[来源:学科网ZXXK] (2)(-3m-4n)2=9m2+24mn+16n2; (3)(-3a+b)2=9a2-6ab+b2. 方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.[来源:Zxxk.Com] 【类型二】 构造完全平方式 如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值. 解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m的值. 解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61. 方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 【类型三】 逆用完全平方公式 已知a2+b2-8a-10b+41=0,求5a-b2+25的值. 解析:从已知中直接求出a、b是困难的,试着把已知的左边转化为两个完全平方式. 解:由已知,得(a2-2·a·4+42)+(b2-2·b·5+52)=0,即(a-4)2+(b-5)2=0,所以a-4=0,b-5=0,即a=4,b=5.当a=4,b=5时,5a-b2+25=5×4-52+25=20. 方法总结:逆用完全平方公式,再结合平方或平方和的非负性是解答此题的关键.[来源:Z§xx§k.Com] 三、板书设计 完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2. 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆查看更多