- 2021-10-25 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级下册数学教案5-3 第1课时 等腰三角形的性质 北师大版
5.3 简单的轴对称图形 第1课时 等腰三角形的性质 1.理解并掌握等腰三角形的性质;(重点) 2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点) 一、情境导入 探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点? 二、合作探究 探究点:等腰三角形的性质 【类型一】 利用“等边对等角”求角度 等腰三角形的一个内角是50°,则这个三角形的底角的大小是( ) A.65°或50° B.80°或40° C.65°或80° D.50°或80° 解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A. 方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论. 【类型二】 利用方程思想求等腰三角形的角度 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数. 解析:设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.[来源:学科网] 解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x.∵BD=BC,∴∠BCD=∠BDC.∵∠A+∠ABD+∠ADB=180°,∠ADB+∠BDC=180°,∴∠BDC=∠A+∠ABD=2x.∵AB=AC,∴∠ABC=∠BCD=2x.在△ABC中,∠A+∠ABC+∠ACB=180°,∴x+2x+2x=180 °,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°. 方法总结:利用等腰三角形的性质和三角形内角和可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x. 【类型三】 利用“等边对等角”的性质进行证明 如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,且∠DBC=∠F,试说明:EC∥DF. 解析:先由等腰三角形的性质得出∠ABC=∠ACB,根据角平分线定义得到∠DBC=∠ABC,∠ECB=∠ACB,那么∠DBC=∠ECB,再由∠DBC=∠F,等量代换得到∠ECB=∠F,于是根据平行线的判定得出EC∥DF. 解:∵△ABC为等腰三角形,AB=AC,∴∠ABC=∠ACB.又∵BD、CE为底角的平分线,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF. 方法总结:证明线段的平行关系,主要是通过证明角相等或互补. 【类型四】 利用等腰三角形“三线合一”的性质进行证明 如图,点D、E在△ABC的边BC上,AB=AC. (1)若AD=AE,如图①,试说明:BD=CE;[来源:Z,xx,k.Com] (2)若BD=CE,F为DE的中点,如图②,试说明:AF⊥BC. 解析:(1)过A作AG⊥BC于G.根据等腰三角形的性质得出BG=CG,DG=EG即可得出BD=CE;(2)先求出BF=CF,再根据等腰三角形的性质求解. 解:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG,∴BG-DG=CG-EG,∴BD=CE; (2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC. 方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.[来源:学科网ZXXK] 三、板书设计 1.等腰三角形的性质:[来源:学#科#网Z#X#X#K] 等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.[来源:Zxxk.Com] 2.运用等腰三角性质解题的一般思想方法: 方程思想、整体思想和转化思想. 本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高查看更多