- 2021-10-25 发布 |
- 37.5 KB |
- 26页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教版七年级数学上册第一章1.3有理数的加减法
第一章 有理数 1.3有理数的加减法 第1课时 1.了解有理数加法的意义,理解有理数加法法则的 合理性. 2.能运用该法则准确进行有理数的加法运算.(重点) 3.经历探索有理数加法法则的过程,理解并掌握有 理数加法的法则.(难点) 学习目标 我是火炬手 +1 -1 (+1) +(-1)= 0 动物王国举办奥运会,蚂蚁当火炬手,它第一次从数 轴上的原点上向正方向跑一个单位,接着向负方向跑一个 单位.蚂蚁经过两次运动后在哪里?如何列算式? 导入新课 情境引入 讲授新课 合作探究 一只可爱的小狗,在一条东西走向的笔直 公路上行走,现规定向东为正,向西为负. 0 1 2 3 4-1-2-3 东 有理数的加法法则 如果小狗先向东行走2米,再继续向东行走1 米,则小狗两次一共向哪个方向行走了多少米? 0 1 2 3 4-1-2-3 东 解:小狗一共向东行走了(2+1)米,写成 算是为: (+2)+(+1)= +(2+1)(米) 想一想 如果小狗先向西行走2米,再继续向西行走1 米,则小狗两次一共向哪个方向行走了多少米? 0 1 2 3 4-1-2-3 东 想一想 解:两次行走后,小狗向西走了(2+1)米.用算 式表示: (- 2)+(- 1)= -(2 + 1)(米) (+2)+(+1)= +(2+1)=+3 (-2)+(-1)= -(2+1)=-3 加数 加数 和 你从上面两个式子中发现了什么? 比一比 同号两数相加,取相同的符号,并把绝对值相加. 有理数加法法则一: (1) 如果小狗先向西行走3米,再继续向东行走 2米,则小狗两次一共向哪个方向行走了多少米? 0 1 2 3 4-1-3 -2 东 小狗两次一共向西走了(3-2)米.用算式表 示为: -3+(+2)=-(3-2)(米) 想一想 (2) 如果小狗先向西行走2米,再继续向东行走 3米,则小狗两次一共向哪个方向行走了多少米? 0 1 2 3 4-1-2 东 小狗两次一共向东走了(3-2)米.用算式表 示为: -2+(+3)=+(3-2)(米) (3) 如果小狗先向西行走2米,再继续向东行 走2米,则小狗两次一共向哪个方向行走了多少米? 0 1 2 3 4-1-2 东 (-2)+(+2)= 0(米) 解:小狗一共行走了0米.写成算式为: -2 + (+3) = +(3-2) -3 + (+2)= -(3-2) -2 + (+2)= (2-2) 比一比 加数 加数 和 加 数 异 号 加数的绝对 值不相等 你从上面三个式子中发现了什么? 有理数加法法则二: 异号两数相加,绝对值相等时和为0;绝对值 不相等时,取绝对值较大的加数的符号,并 用较大的绝对值减去较小的绝对值. 如果小狗先向西行走3米,然后在原地休息, 则小狗向哪个方向行走了多少米? 0 1 2 3 4-1-2 东 小狗向西行走了3米.写成算式为: (-3)+0= -3(米) 想一想 有理数加法法则三: 一个数同0相加,仍得这个数. 有理数加法法则 (1)同号两数相加,结果取相同符号,并把绝对值 相加. (2)异号两数相加,结果取绝对值较大的加数的符 号,并将较大的绝对值减较小的绝对值.互为相反 数的两个数相加得0. (3)一个数同0相加,仍得这个数. 总结归纳 例1 计算: (1)(-4)+(-8);(2)(-5)+13; (3)0+(-7); (4)(-4.7)+4.7. 典例精析 解:(1)(-4)+(-8) =-(4+8) =-12 (2)(-5)+13=+(13-5)=8 (3)0+(-7)=-7 (4)(-4.7)+3.9=-(4.7-3.9)=-0.8 通过有理数加法法则的学习,同学们,你们认为 如何进行有理数加法运算呢? 方法总结:1.先判断类型(同号、异号等); 2.再确定和的符号; 3.最后进行绝对值的加减运算. 议一议 例2 已知│a│= 8,│b│= 2; (1)当a、b同号时,求a+b的值; (2)当a、b异号时,求a+b的值. 分析:先根据的a、b符号,分类讨论,再计算a+b的值 解:因为│a│= 8,│b│= 2,所以a= ±8,b= ±2. (1)因为a、b同号,所以a= 8,b= 2或a= -8,b= -2. 所以a+b= 8+2=10,或a+b=- 8+(-2)=-10. (2)因为a、b异号,所以a= 8,b=- 2或a= -8,b= 2. 所以a+b= 8+(-2)=6,或a+b=- 8+2=-6. 若|x-3|与|y+2|互为相反数,求x+y的值. 变式训练 解:由题意得|x-3|+|y+2|=0,又|x-3|≥0,|y+ 2|≥0,所以x-3= 0,y+2=0,所以x=3 ,y=-2. 所以x+y=3-2=1. 红队 黄队 蓝队 净胜球 红队 4:1 0:1 2 黄队 1:4 1:0 -2 蓝队 1:0 0:1 0 例3 足球循环赛中,红队胜黄队4:1,黄队胜 蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数. 分析: 有理数加法的应用 解:每个队的进球总数记为正数,失球总数记 为负数,这两数的和为这队的净胜球数. 三场比赛中,红队共进4球,失2球,净胜 球数为(+4)+(-2)=+(4-2)=2 黄队共进2球,失4球,净胜球为 (+2)+(-4)=-(4-2)=-2 篮球共进( )球,失( )球, 净胜球数为( ). 1 1 (+1)+(-1)=0 海平面的高度为0m.一艘潜艇从海 平面先下潜40m,再上升15m.求现在 这艘潜艇相对于海平面的位置. (上升为正,下潜为负) 解:潜水艇下潜40m,记作-40m;上升 15m,记作+15m.根据题意,得 (-40)+(+15)=-(40-25)=-25(m) 答:现在这艘潜艇位于海平面下25m处. -50m -30m -20m 海平面 -10m 0m -40m 针对训练 当堂练习 1.两个有理数的和为零,则这两个有理数一定 ( ) A.都是零 B.至少有一个是零 C.一正一负 D.互为相反数 2.在1,-1,-2这三个数中,任意两数之和的最 大值是( ) A.1 B.0 C.-1 D.3 D B A. a+c<0 B. b+c<0 C. -b+a<0 D.-a+b+c<0 3.已知有理数a,b,c在数轴上的位置如图所示,则 下列结论中错误的是( ) A.1 B.-5 C.-5或-1 D.5或1 4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( ) C D (1)(-0.6)+(-2.7); (2)3.7+(-8.4); (3)3.22+1.78; (4)7+(-3.3). 5.计算 答案:(1)-3.3 (2)-4.7 (3)5 (4)3.7 解:中午的气温为-25+11=-14(℃), 夜间的气温为-14+(-13)=-27(℃) 6.某城市一天早晨的气温是-25℃,中午上升了 11℃,夜间又下降了13℃,那么这天中午、夜间 的气温分别是多少? 学科网 课堂小结 确定类型 定符号 绝对值 同号 异号(绝对值 不相等) 异号(互为相 反数) 与0相加 相同符号 取绝对值较大 的加数的符号 相加 相减 结果是0 仍是这个数 有理数的加法法则:查看更多