- 2022-03-31 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级上册数学课件《有理数的乘方》 (5)_北师大版 (2)
§2.9有理数的乘方 古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“就在这个棋盘上放些米粒吧。第一格放一粒米,第二格放两粒米,第三格放4粒米,然后是8粒米、16粒、32粒、…一直到第64格。”“你真傻!就要这么一点米粒?”国王哈哈大笑。大臣说:“就怕您的国库里没有这么多米!”你认为国王的国库里有这么多米吗?事实上,按照这个大臣的要求,放满一个棋盘上的64个格子需要1+22+23+……+263=264-1粒米。264到底多大呢?导入:棋盘上的学问 如图,一正方形的边长为3cm,则它的面积为____________平方厘米;一正方体的棱长为3cm,则它的体积为___________立方厘米。3×3×33×333 细胞分裂问题:某种细胞每过30分钟便由1个分裂成2个。经过3小时,这种细胞由1个能分裂成多少个?试一试分析:2(个)2×2×2=8(个)<二次>1个小时后:<一次>1个细胞30分后:2×2=4(个)<三次>1.5个小时后:…………<六次>3个小时后:2×2×……×2=64(个)6个 你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,这样捏合7次后能拉出多少根细面条?想一想第一次捏合后第二次捏合后第三次捏合后… 4×4×4记作:2×2×2×2×2×2记作:一般地,任意多个相同的有理数相乘,我们如何去简化表示呢?43264+4+4=4×32+2+2+2+2+2=2×6相同因数的乘法如何简化?4×4记作:42 乘方的意义这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数,an读作a的n次幂(或a的n次方)。(1次方可省略不写,2次方又叫平方,3次方又叫立方。)获取新知a×a×……×a=ann个幂指数因数的个数底数因数 巩固新知:1、(口答)把下列相同因数的乘积写成幂的形式,并说出底数和指数:(1)(-6)×(-6)×(-6)底数是–6,指数是3(2)底数是指数是4温馨提示:幂的底数是分数或负数时,底数应该添上括号! 理解识记777底数指数-310-3-310 1、把写成几个相同因数相乘的形式2、把(-2)×(-2)×(-2)×···×(-2)10个(-2)写成幂的形式。议一议 例1计算:(1)(-3)2(2)1.53解:(1)(-3)2=(-3)×(-3)=9;(2)1.53=1.5×1.5×1.5=3.375; (4)(-1)11=-1(为什么?) 做一做(1)102103(2)(3)(4)(-0.1)(-0.1)(-0.1)(-0.1)(-10)1010 探究发现规律:(1)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。(2)底数绝对值为10的幂的特点:1后面0的个数与指数相同。(3)底数绝对值为0.1的幂的特点:1前面0的个数与指数相同(包括小数点前的1个零。 猜一猜 例2计算:–32;(4)8÷(-2)3×(-2.5)(2)3×23;(3)(3×2)3;解:原式=-(3×3)=-9解:原式=3×8=24解:原式=63=216解:原式=8÷(-8)×(-2.5)=2.5先算乘方,后算乘除;如果遇到括号就先进行括号里的运算。思考:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序? 请你说说下列各数表示什么?它们一样吗?(1)23与32(2)与(3)(-5)4与-54对于分数的乘方,负数的乘方,书写时一定要注意小括号。 运用拓展(1)、(-5)3(2)、(3)、5×23(4)、(5×2)3(5)、(-2)2×(-3)2(6)、(-2)3÷22-1252568140100036-2 如果一层楼按高3米计算,把足够长的厚0.1毫米的纸继续折叠20次约有104米高,有34层楼高;继续折叠30次后有10万多米高,有12个珠穆朗玛峰高。分析:(1)0.1毫米×220=0.1毫米×1048576=104.8576米34×3=102米(2)0.1毫米×230=0.1毫米×1073741824=107374.1824米8844.43×12=106133.16链接生活乘方真奇妙! 这节课你学会了一种什么运算?你有何体会?小结反思(2)负数的乘方,在书写时一定要把整个负数(连同符号),用小括号括起来.分数的乘方,在书写的时一定要把整个分数用小括号括起来.(1)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.查看更多