苏教版七年级数学下册期末知识点总结,精品3套

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

苏教版七年级数学下册期末知识点总结,精品3套

苏教版七年级数学下册期末知识点总结,精品3套目录第七章平面图形的认识(二)1第八章幂的运算2第九章整式的乘法与因式分解3第十章二元一次方程组4第十一章一元一次不等式4第十二章证明9第七章平面图形的认识(二)一、知识点:1、“三线八角”①如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。②如何由角找线:组成角的三条线中的公共直线就是截线。2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。简述:平行于同一条直线的两条直线平行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。简述:垂直于同一条直线的两条直线平行。3、平行线的判定和性质:新|课|标|第|一|网判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。若三角形的三边分别为a、b、c,则 6、三角形中的主要线段:三角形的高、角平分线、中线。注意:①三角形的高、角平分线、中线都是线段。②高、角平分线、中线的应用。7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。8、多边形的内角和:n边形的内角和等于(n-2)•180°;XkB1.com任意多边形的外角和等于360°。第八章幂的运算幂(power)指乘方运算的结果。an指将a自乘n次(n个a相乘)。把an看作乘方的结果,叫做a的n次幂。对于任意底数a,b,当m,n为正整数时,有am•an=am+n(同底数幂相乘,底数不变,指数相加)am÷an=am-n(同底数幂相除,底数不变,指数相减)(am)n=amn(幂的乘方,底数不变,指数相乘)(ab)n=anan(积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a≠0)(任何不等于0的数的0次幂等于1)a-n=1/an(a≠0)(任何不等于0的数的-n次幂等于这个数的n次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在中,a叫做底数,n叫做指数。2.乘方的性质(1)负数的奇次幂是负数,负数的偶次幂的正数。(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。第九章整式的乘法与因式分解一、整式乘除法单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7注:运算顺序 先乘方,后乘除,最后加减单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照顺序,注意常数项、负号.本质是乘法分配律。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.(a+b)(a-b)=a2-b2http://www.xkb1.com完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.(a±b)2=a2±2ab+b2因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式.因式分解方法:1、提公因式法.关键:找出公因式公因式三部分:①系数(数字)一各项系数最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法.①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的平方.③x3-y3=(x-y)(x2+xy+y2)立方差公式3、十字相乘(x+p)(x+q)=x2+(p+q)x+pq因式分解三要素:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证第十章二元一次方程组1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。4、 代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。1、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.2、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;新|课|标|第|一|网(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.第十一章一元一次不等式一元一次不等式重点:不等式的性质和一元一次不等式的解法。难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。知识点一:不等式的概念1.不等式:  用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.  要点诠释:   (1)不等号的类型:    ①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;  (2)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。2.不等式的解:  能使不等式成立的未知数的值,叫做不等式的解。  要点诠释:  由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。3.不等式的解集:  一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。  要点诠释:新|课|标|第|一|网  不等式的解集必须符合两个条件:  (1)解集中的每一个数值都能使不等式成立;  (2)能够使不等式成立的所有的数值都在解集中。知识点二:不等式的基本性质  基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。       符号语言表示为:如果,那么。  基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。       符号语言表示为:如果,并且,那么(或)。  基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。       符号语言表示为:如果,并且,那么(或)  要点诠释:  (1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;  (2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;  (3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;  (4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。知识点三:一元一次不等式的概念  只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。  要点诠释:  (1)一元一次不等式的概念可以从以下几方面理解:   ①左右两边都是整式(单项式或多项式);②只含有一个未知数;   ③未知数的最高次数为1。  (2)一元一次不等式和一元一次方程可以对比理解。   相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤” 连接),一元一次方程表示相等关系(用“=”连接)。知识点四:一元一次不等式的解法1.解不等式:  求不等式解的过程叫做解不等式。2.一元一次不等式的解法:  与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.  要点诠释:http://www.xkb1.com  (1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用  (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。3.不等式的解集在数轴上表示:  在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助。 要点诠释:  在用数轴表示不等式的解集时,要确定边界和方向: (1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左规律方法指导(包括对本部分主要题型、思想、方法的总结)  1、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)  2、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。  3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为或的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为1。这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。               解一元一次不等式的一般步骤及注意事项变形名称具体做法注意事项去分母在不等式两边同乘以分母的最小公倍数(1)不含分母的项不能漏乘(2)注意分数线有括号作用,去掉分母后,如分子是多项式,要加括号(3)不等式两边同乘以的数是个负数,不等号方向改变。 去括号根据题意,由内而外或由外而内去括号均可新课标第一网(1)运用分配律去括号时,不要漏乘括号内的项(2)如果括号前是“—”号,去括号时,括号内的各项要变号移项把含未知数的项都移到不等式的一边(通常是左边),不含未知数的项移到不等式的另一边移项(过桥)变号合并同类项把不等式两边的同类项分别合并,把不等式化为或的形式合并同类项只是将同类项的系数相加,字母及字母的指数不变。系数化1在不等式两边同除以未知数的系数,若且,则不等式的解集为;若且,则不等式的解集为;若且,则不等式的解集为;若且,则不等式的解集为;(1)分子、分母不能颠倒(2)不等号改不改变由系数的正负性决定。(3)计算顺序:先算数值后定符号  4、将一元一次不等式的解集在数轴上表示出来,是数学中数形结合思想的重要体现,要注意的是“三定”:一是定边界点,二是定方向,三是定空实。  5、用一元一次不等式解答实际问题,关键在于寻找问题中的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。  6、常见不等式的基本语言的意义:wWw.Xkb1.cOm   (1),则x是正数;     (2),则x是负数;   (3),则x是非正数;    (4),则x是非负数;   (5),则x大于y;   (6),则x小于y;   (7),则x不小于y;    (8),则x不大于y;   (9)或,则x,y同号;(10)或,则x,y异号;    (11)x,y都是正数,若,则;若,则;   (12)x,y都是负数,若,则;若,则第十二章证明教学目标:1.掌握定义、命题、定理、逆命题、互逆命题等概念,知道一个命题是真命题,它的逆命题不一定是真命题。2.基本事实是其真实性不加证明的真命题,弄清真命题与定理的区别。3.会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。重点:定义、命题、定理、逆命题、互逆命题等概念的理解与运用难点:会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。内容:新|课|标|第|一|网1.以基本事实:“同位角相等,两直线平行”证明:(1)“内错角相等,两直线平行”、“同旁内角互补,两直线平行”、“平行于同一条直线的两条直线平行”2.基本事实:“过直线外一点,有且只有一条直线与这条直线平行”“两直线平行,同位角相等”证明:(1)两只相平行,内错角相等(2)两只相平行,同旁内角互补(3)三角形内角和定理”(4)直角三角形的两个锐角互余(5)有两个锐角互余的三角形是直角三角形(6)三角形的外角等于与它不相邻的两个外角的和初一数学(上)应知应会的知识点代数初步知识1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û0和正整数;a>0Ûa是正数;a<0Ûa是负数;a≥0Ûa是正数或0Ûa是非负数;a≤0Ûa是负数或0Ûa是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0Ûa+b=0Ûa、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);; (4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1Ûa、b互为倒数;若ab=-1Ûa、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0Ûa=0,b=0; (4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程 1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.苏教版初一数学下学期期末复习知识点及考试题型平面图形认识(二)考点:平等线条件与性质,图形平移,三角形的认识,两边之和大于第三边,三条线段(角平分线、高、中线)作图及有关性质,多边形内角和、外角和。1、下列图形中,不能通过其中一个四边形平移得到的是()2、如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF的度数为()A.36°B.54°C.72°D.108°3、已知一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是.4.三角形的两边长分别为2和5,若该三角形第三边长为奇数,则该三角形的周长为.5、小明从点A向北偏东75°方向走到点B,又从点B向南偏西30°方向走到点C,则∠ABC的度数为________;6、解答题(1)请把下列证明过程补充完整:已知:如图,DE∥BC,BE平分∠ABC.求证:∠1=∠3.证明:因为BE平分∠ABC(已知),所以∠1=______().又因为DE∥BC(已知),所以∠2=_____().所以∠1=∠3().7、如图:已知CE平分∠BCD,DE平分∠ADC,∠1+∠2=90°,求证:AD∥CB练习:1、如图,不一定能推出的条件是:()A.B.C.D. 2、下列命题①同旁内角互补,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角。它们的逆命题是真命题的是.3、如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD.因为∠A+∠C=180°,所以AB∥CD第3题第4题4.如图,直线∥,⊥.有三个命题:①;②;③.下列说法中,正确的是()(A)只有①正确(B)只有②正确(C)①和③正确(D)①②③都正确5.如图,把矩形ABCD沿EF折叠,点A、B分别落在A′、B′处.A′B′与AD交于点G,若∠1=50°,则∠AEF=(  )第5题A.110°B.115°C.120°D.130°6、一个多边形的内角和是540°,那么这个多边形是边形.7、如右图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE=°.8.已知:在同一平面内,直线a∥c,且直线a到直线c的距离是3;直线b∥c,直线b到直线c的距离为5,则直线a到直线b的距离为.9、(1)已知:如图,点CD,AB,AC,BC在同一直线上,DE∥BC,∠1=∠2.求证:AB∥EF,第9题∵EC∥FD(已知)∴∠F=∠___(________________)∵∠F=∠E(已知)∴∠__=∠E(________________)∴_____∥_____(_________________)(2)你在(1)的证明过程中用了哪两个互逆的真命题?10、解答题:(1)如图,,,∥,交于点,是的角平分线.求各内角的度数.(2)完成下列推理过程已知:如图求证:∥证明:(已知)()∥()()又(已知) ()∥BACDA1A211、如图,在△ABC中,.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2010BC与∠A2010CD的平分线相交于点A2011,得∠A2011.根据题意填空:(1)如果∠A=80°,则∠A1=°.(4分)(2)如果∠A=,则∠A2011=.(直接用代数式)12、已知∠1+∠2=180,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明你的理由.幂运算考点:同底数学幂相乘、相除,幂的乘方,积的乘方。零指数、负整数指数。科学记数法。公式的反向使用。1.等于()A.-B.-4C.4D.2.脱氧核糖核酸(DNA)的分子直径为0.0000002cm,用科学记数法表示为cm.3、计算:(-3)2-2-3+30; 4、(1)若2m=8,2n=32,则22m+n-4=;(2)若x=2m-1,将y=1+4m+1用含x的代数式表示.(3)已知,则的值是A.0B.-2C.-2或0D.-2、0、-15.水是生命之源,水是由氢原予和氧原子组成的,其中氢原子的直径为0.0000000001m,把这个数值用科学记数法表示为()A.1×109B.1×1010C.1×10-9D.1×10-106、若ax=2,ay=3,则a3x-2y=.7、计算:(1)(2)8、下列计算中,正确的:()A.B.C.D.9、若,,则等于:()A.B.C.D.10、生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为.这个数量用科学记数法可表示为.整式乘法与因式分解:1.下面计算中,正确的是()A.(m+n)3(m+n)2=m5+n5B.3a3-2a2=aC.(x2)n+(xn)2-xn·x2=x2nD.(a+b)(-a+b)=-a2+b22.下列等式从左到右的变形中,是因式分解的是()A.x2-9+6x=(x+3)(x-3)+6xB.(x+5)(x-2)=x2+3x-10C.x2-8x+16=(x-4)2D.6ab=2a·3b3.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比()A.减少9m2B.增加9m2C.保持不变D.增加6m24、若9x2-mxy+16y2是一个完全平方式,那么m的值是() A.12  B.-12  C.±12   D.±245、计算:-3x·2xy=.6、计算与因式分解:(1);(2)(x+2)2-(x+1)(x-1)+(2x-1)(x-2)(3)先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=-1(4)先化简,再求值:,其中,(5)把下列各式分解因式:(1)2x2-8xy+8y2(2)4x3-4x2y-(x-y)(3)ax3y+axy3-2ax2y2(4)x2(x-y)+(y-x)7、已知:则____________二元一次方程组1.已知,如果x与y互为相反数,则k=.2.甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的三分之一给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是()A.B.C.D.3、 某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是(  ).A.5千米B.7千米C.8千米D.15千米4、(1)若是关于x、y的方程2x-5y+4k=0的一组解,则k=.(2)若x,y满足,则5、解方程组:(1)(2)(3)           (4)6、若关于x、y的二元一次方程租的解x、y互为相反数,求m 的值。7、已知方程组与有相同的解,求m和n值8、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B种产品用甲种原料4千克,乙种原料10千克,可获利1200元。(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品的总利润为y元,其中一种产品生产件数为x件,试写出y与x之间的关系式,并利用这个关系式说明那种方案获利最大?最大利润是多少? 9、如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.10.小明新买了一辆“和谐”牌自行车,说明书中关于轮胎的使用说明如左下:小明看了说明书后,和爸爸的讨论如右下.小明经过计算,得出这对轮胎能行驶的最长路程.聪明的同学,请你也通过计算得出这对轮胎能行驶的最长路程.XkB1.com小明看了说明后,和爸爸讨论:备用题:今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?一元一次不等式(组)1、如果不等式组有解,那么m的取值范围是()(A)m>8(B)m≥8(C)m<8(D)m≤82、不等式组的解集在数轴上表示为(  )3.不等式组的解集是_______________ 4、关于x的不等式2x-a≤-1的解集如图所示,则a的取值是().01-1-2第4题A.0B.3C.-2D.-15、若方程3m(x+1)+1=m(3-x)-5x的解是负数,则m的取值范围是(  ).A.m>-1.25B.m<-1.25C.m>1.25D.m<1.256、三角形的三边长分别为3,a,7,则a的取值范围是.7.解不等式组并写出该不等式组的整数解.8、若关于、的二元一次方程组的解满足﹥1,则的取值范围是.9.解不等组:并求其整数解。10.已知方程的解x为非正数,y为负数,求a的取值范围。 11、某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表.A种产品B种产品成本(万元/件)25利润(万元/件)13(1)若工厂计划获利14万元,问A、B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.证明:定义、命题的组成与分类、证明的格式1、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,真命题的个数为()A、0B、1个C、2个D、3个2、下列命题中:(1)过一点有且只有一条直线垂直于已知直线;(2)经过一点有且只有一条直线和已知直线平行;(3)过线段AB外一点P作线段AB的中垂线;(4)如果直线l1与l2相交,直线l2与l3相交,那么l1∥l2;(5)如果两条直线都与同一条直线垂直,那么这两条直线平行;(6)两条直线没有公共点,那么这两条直线一定平行;(7)两条直线与第三条直线相交,如果内错角相等,则同旁内角互补;其中正确命题的个数为()A.2个B.3个C.4个D.5个3.如图,直线a、b被直线c所截,若要a∥b,需增加条件_______(填一个即可). 4.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=_______.5.如图所示,如果BD平分∠ABC,补上一个条件_______作为已知,就能推出AB//CD.6.下面的句子:①我是中学生;②这花真香啊!③对顶角相等;④内错角相等;⑤延长线段AB;⑥明天可能下雨;⑦下午打篮球吗?其中是命题的有_______(填序号).7.把“对顶角相等”改写成“如果……,那么……”的形式为:_______.8.命题“等腰三角形两底角相等”的逆命题是_______.9.命题“当k=2时,二次三项式x2+kxy+y2是完全平方式”的逆命题是_______命题(填“真”或“假”).10、如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD=.如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.
查看更多

相关文章

您可能关注的文档