- 2021-07-01 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届数学(理)一轮复习人教A版第15讲导数与函数的极值学案
第15讲 导数与函数的极值、最值 1.函数的极值 (1)函数的极小值: 函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f'(a)=0;而且在点x=a附近的左侧 ,右侧 ,则点a叫作函数y=f(x)的极小值点,f(a)叫作函数y=f(x)的极小值. (2)函数的极大值: 函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f'(b)=0;而且在点x=b附近的左侧 ,右侧 ,则点b叫作函数y=f(x)的极大值点,f(b)叫作函数y=f(x)的极大值. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则 为函数的最小值, 为函数的最大值;若函数f(x)在[a,b]上单调递减,则 为函数的最大值, 为函数的最小值. 3.实际应用题 理解题意、建立函数模型,使用导数方法求解函数模型,根据求解结果回答实际问题. 常用结论 导数研究不等式的关键是函数的单调性和最值,各类不等式与函数最值关系如下: 不等式类型 与最值的关系 ∀x∈D,f(x)>M ∀x∈D,f(x)min>M ∀x∈D,f(x)查看更多
相关文章
- 当前文档收益归属上传用户