2018-2019学年山西省应县高二下学期期末考试数学(理)试题 Word版
应 县 高 二 年 级 期 末 考 试
数 学 试 题(理) 2019.7
时间:120分钟 满分:150分
一.选择题.
1.已知集合A={x|x2-6x+5≤0},B={x|y=log2(x-2)},则A∩B=( )
A.(1,2) B.[1,2)
C.(2,5] D.[2,5]
2.若复数z满足(2-i)z=|1+2i|,则z的虚部为( )
A. B.i
C.1 D.i
3.用反证法证明命题:“三角形的内角中至少有一个不大于60°”,假设正确的是( )
A.假设三个内角都不大于60°
B.假设三个内角都大于60°
C.假设三个内角至多有一个大于60°
D.假设三个内角至多有两个大于60°
4.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如下表:
使用智能手机
不使用智能手机
总计
学习成绩优秀
4
8
12
学习成绩不优秀
16
2
18
总计
20
10
30
附表:
P(K2≥k0)
0.10
0.05
0.010
0.005
0.001
k0
2.706
3.841
6.635
7.879
10.828
经计算K2=10,则下列选项正确的是( )
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.有99.9%的把握认为使用智能手机对学习有影响
D.有99.9%的把握认为使用智能手机对学习无影响
5.已知f=2x-5,且f(a)=6,则a等于( )
A. B.-
C. D.-
6.函数f(x)=|x-2|x的单调减区间是( )
A.[1,2] B.[-1,0]
C.[0,2] D.[2,+∞)
7.把4个苹果分给两个人,每人至少一个,不同分法种数有( )
A.6 B.12
C.14 D.16
8.若x>2m2-3是-1
0,则f(x1)+f(x2)的值( )
A.恒为负值 B.恒等于零
C.恒为正值 D.无法确定正负
11.若函数f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上递减,则a的取值范围为( )
A.[1,2) B.[1,2]
C.[1,+∞) D.[2,+∞)
12.已知函数f(x)=若方程f(f(x))-2=0恰有三个实数根,则实数k的取值范围是( )
A.[0,+∞) B.[1,3]
C. D.
二.填空题.
13.经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的线性回归直线方程:=0.245x+0.321,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.
14.若命题“对∀x∈R,kx2-kx-1<0”是真命题,则k的取值范围是________.
15.把3名辅导老师与6名学生分成3个小组(每组1名教师,2名学生)开展实验活动,但学生甲必须与教师A在一起,这样的分组方法有________种.(用数字作答)
16.已知函数f(x)=|log3x|,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则=________.
三. 解答题
17.在直角坐标系xOy中,圆C的方程为x2+(y-2)2=4.以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin=5,射 线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.
18.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;
19.已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=-4ln x的零点个数.
20.在平面直角坐标系中,将曲线C1上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线C2.以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C1的极坐标方程为ρ=2.
(1)求曲线C2的参数方程;
(2)过坐标原点O且关于y轴对称的两条直线l1与l2分别交曲线C2于A,C和B,D,且点A在第一象限,当四边形ABCD的周长最大时,求直线l1的普通方程.
21.某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p=,记该班级完成n首背诵后的总得分为Sn.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)记ξ=|S5|,求ξ的分布列及数学期望.
22.已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)·f()>k·g(x)恒成立,求实数k的取值范围.
高二期末考试理数答案2019.7
一.选择题.
1.C 2.A 3.B 4.A 5.A 6.A 7.C 8.D 9.C 10.A 11.A
12.C ∵f(f(x))-2=0,∴f(f(x))=2,
∴f(x)=-1或f(x)=-(k≠0).
(1)当k=0时,作出函数f(x)的图象如图①所示,
由图象可知f(x)=-1无解,∴k=0不符合题意;
(2)当k>0时,作出函数f(x)的图象如图②所示,
由图象可知f(x)=-1无解且f(x)=-无解,
即f(f(x))-2=0无解,不符合题意;
(3)当k<0时,作出函数f(x)的图象如图③所示,
由图象可知f(x)=-1有1个实根,
∵f(f(x))-2=0有3个实根,∴f(x)=-有2个实根,
∴1<-≤3,解得-1<k≤-.
综上,k的取值范围是.故选C.
二.
13.0.245 14.(-4,0] 15.30 16.9
f(x)=|log3x|=所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m<n且f(m)=f(n),可得则所以0<m2<m<1,则f(x)在[m2,1)上单调递减,在(1,n]上单调递增,所以f(m2)>f(m)=f(n),则f(x)在[m2,n]上的最大值为f(m2)=-log3m2=2,解得m=,则n=3,所以=9.
三.
17.解:(1)将x=ρcos θ,y=ρsin θ代入x2+(y-2)2=4,
得圆C的极坐标方程为ρ=4sin θ.
(2)设P(ρ1,θ1),则由
解得ρ1=2,θ1=.
设Q(ρ2,θ2),则由
解得ρ2=5,θ2=.
所以|PQ|=ρ2-ρ1=3.
.
18.(1)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.
(2)解:随机变量X的所有可能取值为0,1,2,3.
P(X=k)=(k=0,1,2,3).
所以,随机变量X的分布列为
X
0
1
2
3
P
随机变量X的数学期望E(X)=0×+1×+2×+3×=.
19(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},
∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.
∵f(x)min=f(1)=-4a=-4,∴a=1.
故函数f(x)的解析式为f(x)=x2-2x-3.
(2)∵g(x)=-4ln x=x--4ln x-2(x>0),
∴g′(x)=1+-=.
令g′(x)=0,得x=1或x=3.
当x变化时,g′(x),g(x)的取值变化情况如下:
x
(0,1)
1
(1,3)
3
(3,+∞)
g′(x)
+
0
-
0
+
g(x)
极大值
极小值
当0k·g(x),
得(3-4log2x)(3-log2x)>k·log2x,
令t=log2x,因为x∈[1,4],所以t=log2x∈[0,2],
所以(3-4t)(3-t)>k·t对一切t∈[0,2]恒成立,
①当t=0时,k∈R;
②当t∈(0,2]时,k<恒成立,
即k<4t+-15,
因为4t+≥12,当且仅当4t=,即t=时取等号,
所以4t+-15的最小值为-3.所以k<-3.
综上,实数k的取值范围为(-∞,-3).