2018-2019学年山西省应县高二下学期期末考试数学(理)试题 Word版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018-2019学年山西省应县高二下学期期末考试数学(理)试题 Word版

‎ 应 县 高 二 年 级 期 末 考 试 ‎ 数 学 试 题(理) 2019.7‎ 时间:120分钟 满分:150分 ‎ 一.选择题.‎ ‎1.已知集合A={x|x2-6x+5≤0},B={x|y=log2(x-2)},则A∩B=(  )‎ A.(1,2)         B.[1,2)‎ C.(2,5] D.[2,5]‎ ‎2.若复数z满足(2-i)z=|1+2i|,则z的虚部为(  )‎ A. B.i C.1 D.i ‎3.用反证法证明命题:“三角形的内角中至少有一个不大于60°”,假设正确的是(  )‎ A.假设三个内角都不大于60°‎ B.假设三个内角都大于60°‎ C.假设三个内角至多有一个大于60°‎ D.假设三个内角至多有两个大于60°‎ ‎4.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如下表:‎ 使用智能手机 不使用智能手机 总计 学习成绩优秀 ‎4‎ ‎8‎ ‎12‎ 学习成绩不优秀 ‎16‎ ‎2‎ ‎18‎ 总计 ‎20‎ ‎10‎ ‎30‎ 附表:‎ P(K2≥k0)‎ ‎0.10‎ ‎0.05‎ ‎0.010‎ ‎0.005‎ ‎0.001‎ k0‎ ‎2.706‎ ‎3.841‎ ‎6.635‎ ‎7.879‎ ‎10.828‎ 经计算K2=10,则下列选项正确的是(  )‎ A.有99.5%的把握认为使用智能手机对学习有影响 B.有99.5%的把握认为使用智能手机对学习无影响 C.有99.9%的把握认为使用智能手机对学习有影响 D.有99.9%的把握认为使用智能手机对学习无影响 ‎5.已知f=2x-5,且f(a)=6,则a等于(  )‎ A. B.- C. D.- ‎6.函数f(x)=|x-2|x的单调减区间是(  )‎ A.[1,2] B.[-1,0]‎ C.[0,2] D.[2,+∞)‎ ‎7.把4个苹果分给两个人,每人至少一个,不同分法种数有(  )‎ A.6 B.12‎ C.14 D.16‎ ‎8.若x>‎2m2‎-3是-10,则f(x1)+f(x2)的值(  )‎ A.恒为负值 B.恒等于零 C.恒为正值 D.无法确定正负 ‎11.若函数f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上递减,则a的取值范围为(  )‎ A.[1,2) B.[1,2]‎ C.[1,+∞) D.[2,+∞)‎ ‎12.已知函数f(x)=若方程f(f(x))-2=0恰有三个实数根,则实数k的取值范围是(  )‎ A.[0,+∞) B.[1,3]‎ C. D. 二.填空题.‎ ‎13.经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的线性回归直线方程:=0.245x+0.321,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.‎ ‎14.若命题“对∀x∈R,kx2-kx-1<‎0”‎是真命题,则k的取值范围是________.‎ ‎15.把3名辅导老师与6名学生分成3个小组(每组1名教师,2名学生)开展实验活动,但学生甲必须与教师A在一起,这样的分组方法有________种.(用数字作答)‎ ‎16.已知函数f(x)=|log3x|,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则=________.‎ 三. 解答题 ‎17.在直角坐标系xOy中,圆C的方程为x2+(y-2)2=4.以O为极点,x轴的非负半轴为极轴建立极坐标系.‎ ‎(1)求圆C的极坐标方程;‎ ‎(2)直线l的极坐标方程是2ρsin=5,射 线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.‎ ‎18.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.‎ ‎(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?‎ ‎(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;‎ ‎19.已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.‎ ‎(1)求函数f(x)的解析式;‎ ‎(2)求函数g(x)=-4ln x的零点个数.‎ ‎20.在平面直角坐标系中,将曲线C1上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线C2.以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C1的极坐标方程为ρ=2.‎ ‎(1)求曲线C2的参数方程;‎ ‎(2)过坐标原点O且关于y轴对称的两条直线l1与l2分别交曲线C2于A,C和B,D,且点A在第一象限,当四边形ABCD的周长最大时,求直线l1的普通方程.‎ ‎21.某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p=,记该班级完成n首背诵后的总得分为Sn.‎ ‎(1)求S6=20且Si≥0(i=1,2,3)的概率;‎ ‎(2)记ξ=|S5|,求ξ的分布列及数学期望.‎ ‎22.已知函数f(x)=3-2log2x,g(x)=log2x.‎ ‎(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;‎ ‎(2)如果对任意的x∈[1,4],不等式f(x2)·f()>k·g(x)恒成立,求实数k的取值范围.‎ 高二期末考试理数答案2019.7‎ 一.选择题.‎ ‎1.C 2.A 3.B 4.A 5.A 6.A 7.C 8.D 9.C 10.A 11.A ‎ ‎12.C ∵f(f(x))-2=0,∴f(f(x))=2,‎ ‎∴f(x)=-1或f(x)=-(k≠0).‎ ‎ ‎ ‎(1)当k=0时,作出函数f(x)的图象如图①所示,‎ 由图象可知f(x)=-1无解,∴k=0不符合题意;‎ ‎(2)当k>0时,作出函数f(x)的图象如图②所示,‎ 由图象可知f(x)=-1无解且f(x)=-无解,‎ 即f(f(x))-2=0无解,不符合题意;‎ ‎(3)当k<0时,作出函数f(x)的图象如图③所示,‎ 由图象可知f(x)=-1有1个实根,‎ ‎∵f(f(x))-2=0有3个实根,∴f(x)=-有2个实根,‎ ‎∴1<-≤3,解得-1<k≤-.‎ 综上,k的取值范围是.故选C.‎ 二.‎ ‎13.0.245 14.(-4,0] 15.30 16.9‎ f(x)=|log3x|=所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m<n且f(m)=f(n),可得则所以0<m2<m<1,则f(x)在[m2,1)上单调递减,在(1,n]上单调递增,所以f(m2)>f(m)=f(n),则f(x)在[m2,n]上的最大值为f(m2)=-log‎3m2‎=2,解得m=,则n=3,所以=9.‎ 三.‎ ‎17.解:(1)将x=ρcos θ,y=ρsin θ代入x2+(y-2)2=4,‎ 得圆C的极坐标方程为ρ=4sin θ.‎ ‎(2)设P(ρ1,θ1),则由 解得ρ1=2,θ1=.‎ 设Q(ρ2,θ2),则由 解得ρ2=5,θ2=.‎ 所以|PQ|=ρ2-ρ1=3.‎ ‎.‎ ‎18.(1)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.‎ ‎(2)解:随机变量X的所有可能取值为0,1,2,3.‎ P(X=k)=(k=0,1,2,3).‎ 所以,随机变量X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P 随机变量X的数学期望E(X)=0×+1×+2×+3×=.‎ ‎19(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},‎ ‎∴设f(x)=a(x+1)(x-3)=ax2-2ax-‎3a,且a>0.‎ ‎∵f(x)min=f(1)=-‎4a=-4,∴a=1.‎ 故函数f(x)的解析式为f(x)=x2-2x-3.‎ ‎(2)∵g(x)=-4ln x=x--4ln x-2(x>0),‎ ‎∴g′(x)=1+-=.‎ 令g′(x)=0,得x=1或x=3.‎ 当x变化时,g′(x),g(x)的取值变化情况如下:‎ x ‎(0,1)‎ ‎1‎ ‎(1,3)‎ ‎3‎ ‎(3,+∞)‎ g′(x)‎ ‎+‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ g(x)‎  极大值  极小值  当0k·g(x),‎ 得(3-4log2x)(3-log2x)>k·log2x,‎ 令t=log2x,因为x∈[1,4],所以t=log2x∈[0,2],‎ 所以(3-4t)(3-t)>k·t对一切t∈[0,2]恒成立,‎ ‎①当t=0时,k∈R;‎ ‎②当t∈(0,2]时,k<恒成立,‎ 即k<4t+-15,‎ 因为4t+≥12,当且仅当4t=,即t=时取等号,‎ 所以4t+-15的最小值为-3.所以k<-3.‎ 综上,实数k的取值范围为(-∞,-3).‎
查看更多

相关文章

您可能关注的文档