- 2021-07-01 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习教案: 条件概率与独立事件、二项分布、正态分布
条件概率与独立事件、二项分布、正态分布 主标题:条件概率与独立事件、二项分布、正态分布 副标题:为学生详细的分析条件概率与独立事件、二项分布、正态分布的高考考点、命题方向以及规律总结。 关键词:条件概率,独立事件,二项分布,正态分布 难度:3 重要程度:4 考点剖析: 1.了解条件概率和两个事件相互独立的概念. 2.理解n次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题. 命题方向: 1.独立重复试验与二项分布是高中数学的重要内容,也是高考命题的热点,多以解答题的形式呈现,试题难度较大,多为中高档题目. 2.高考对独立重复试验与二项分布的考查主要有以下几个命题角度: (1)已知二项分布,求二项分布列; (2)已知随机变量服从二项分布,求某种情况下的概率. 规律总结: 1个难点——对正态曲线的理解 正态曲线指的是一个函数的图象,其函数解析式是φμ,σ(x)=·e-.正态曲线的性质告诉我们: (1)该函数的值域为正实数集的子集; (2)该函数图象关于直线x=μ对称,且以x轴为渐近线; (3)解析式中前面有一个系数,后面是一个以e为底数的指数函数的形式,幂指数为-,其中σ这个参数在解析式中的两个位置上出现,注意两者的一致性. 2个注意点——掌握离散型随机变量分布列的注意点 (1)分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为“事件”发生的概率; (2)要会根据分布列的两个性质来检验求得的分布列的正误. 3种方法——求分布列的三种方法 (1)由统计数据得到离散型随机变量的分布列; (2)由古典概型求出离散型随机变量的分布列; (3)由互斥事件的概率、相互独立事件同时发生的概率及n次独立重复试验有k次发生的概率求离散型随机变量的分布列. 知 识 梳 理 1.条件概率及其性质 条件概率的定义 条件概率的性质 设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率 (1)0≤P(B|A)≤1 (2)若B,C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A) 2.事件的相互独立性 设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立. 若事件A,B相互独立,则P(B|A)=P(B);事件A与,与B,与都相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 在相同条件下重复做的n次试验称为n次独立重复试验,若用Ai(i=1,2,…,n)表示第i次试验结果,则 P(A1A2A3…An)=P(A1)P(A2)P(A3)…P(An). (2)二项分布 在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率. 4.正态分布 (1)正态分布的定义及表示 如果对于任何实数a,b(a查看更多
相关文章
- 当前文档收益归属上传用户