- 2021-06-30 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习人教A版概率与统计学案(7)
【2018年高考考纲解读】 高考对本内容的考查主要有: (1)抽样方法的选择、与样本容量相关的计算,尤其是分层抽样中的相关计算,A级要求. (2)图表中的直方图、茎叶图都可以作为考查点,尤其是直方图更是考查的热点,A级要求. (3)特征数中的方差、标准差计算都是考查的热点,B级要求. (4)随机事件的概率计算,通常以古典概型、几何概型的形式出现,B级要求. 【重点、考点剖析】 1.概率问题 (1)求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A的对立事件的概率,然后利用P(A)=1-P()可得解; (2)用列举法把古典概型试验的基本事件一一列出来,然后再求出事件A中的基本事件,利用公式P(A)=求出事件A的概率,这是一个形象、直观的好办法,但列举时必须按照某一顺序做到不重复,不遗漏; (3)求几何概型的概率,最关键的一步是求事件A所包含的基本事件所占据区域的测度,这里需要解析几何的知识,而最困难的地方是找出基本事件的约束条件. 2.统计问题 (1)统计主要是对数据的处理,为了保证统计的客观和公正,抽样是统计的必要和重要环节,抽样的方法有三:简单随机抽样、系统抽样和分层抽样; (2)用样本频率分布来估计总体分布一节的重点是:频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,考点是:频率分布表和频率分布直方图的理解及应用; (3)用茎叶图优点是原有信息不会抹掉,能够展开数据发布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了; (4)两个变量的相关关系中,主要能作出散点图,了解最小二乘法的思想,能根据给出的线性或归方程系数或公式建立线性回归方程. 【题型示例】 题型一 随机事件及其概率 例1、(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数 2 16 36 25 7 4 以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率. (2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率. 【变式探究】 (2015·广东,7)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( ) A.0.4 B.0.6 C.0.8 D.1 解析 5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,结果有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c, d),(c,e),(d,e)共10种.恰有一件次品的结果有6种,则其概率为p==0.6. 答案 B 【变式探究】(2015·江苏,5)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 解析 这两只球颜色相同的概率为,故两只球颜色不同的概率为1-=. 答案 【变式探究】(2015·湖南,16)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1、b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖. (1)用球的标号列出所有可能的摸出结果; (2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由. 【变式探究】(2015·北京,17)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买. 商品 顾客人数 甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98 × √ × × (1)估计顾客同时购买乙和丙的概率; (2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率; (3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为=0.2. 【变式探究】(2015·四川,17)一辆小客车有5个座位,其座位号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车,乘客P1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位. (1)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出了其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处) 乘客 P1 P2 P3 P4 P5 座位号 3 2 1 4 5 3 2 4 5 1 (2)若乘客P1坐在了2号座位,其他的乘客按规则就坐,求乘客P5坐到5号座位的概率. 解 (1)余下两种坐法如下表所示: 乘客 P1 P2 P3 P4 P5 座位号 3 2 4 1 5 3 2 5 4 1 (2)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为: 乘客 P1 P2 P3 P4 P5 座位号 2 1 3 4 5 2 3 1 4 5 2 3 4 1 5 2 3 4 5 1 2 3 5 4 1 2 4 3 1 5 2 4 3 5 1 2 5 3 4 1 于是,所有可能的坐法共8种, 设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4, 所以P(A)==. 题型二 古典概型 例2.(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A. B. C. D. 【答案】 D 【2017山东】从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A) (B) (C) (D) 【答案】C 【变式探究】【2016高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A. B. C. D. 【答案】A 【解析】将4种颜色的花种任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一个花坛的种数有4种,故所求概率为,选C. 【变式探究】(2015·新课标全国Ⅰ,4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A. B. C. D. 解析 从1,2,3,4,5中任取3个数有10个基本事件,构成勾股数的只有3,4,5一组,故概率为. 答案 C 【变式探究】(2015·天津,15)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛. (1)求应从这三个协会中分别抽取的运动员的人数; (2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛. ①用所给编号列出所有可能的结果; ②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率. 解 (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2. (2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种. ②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种. 因此,事件A发生的概率P(A)==. 【变式探究】(2015·山东,16)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人) 参加书法社团 未参加书法社团 参加演讲社团 8 5 未参加演讲社团 2 30 (1) 从该班随机选1名同学,求该同学至少参加上述一个社团的概率; (2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率. 题型三 几何概型 例3.【2017课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D. 【答案】B 【变式探究】(2017·江苏卷)记函数f(x)=的定义域为D.在区间[-4,5] 上随机取一个数x,则x∈D的概率是________. 解析:由6+x-x2≥0,解得-2≤x≤3,则D=[-2,3],则所求概率为=. 答案: 【变式探究】(2015·山东,7)在区间[0,2]上随机地取一个数x,则事件“-1≤log≤1”发生的概率为( ) A. B. C. D. 解析 由-1≤log≤1,得≤x+≤2,∴0≤x≤.∴由几何概型的概率计算公式得所求概率P==. 答案 A 【变式探究】(2015·湖北,8)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,p2为事件“xy≤”的概率,则( ) A.p1查看更多