- 2021-06-30 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届新高考版高考数学一轮复习精练:§8-4 直线、平面垂直的判定与性质(试题部分)
§8.4 直线、平面垂直的判定与性质 基础篇固本夯基 【基础集训】 考点一 直线与平面垂直的判定与性质 1.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( ) A.α⊥β且m⊂α B.α⊥β且m∥α C.m∥n且n⊥β D.m⊥n且n∥β 答案 C 2.下列命题中错误的是( ) A.如果平面α外的直线a不平行于平面α,则平面α内不存在与a平行的直线 B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γ C.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β D.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交 答案 C 3.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上一点,E、F分别是A在PB、PC上的射影,给出下列结论: ①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC. 其中正确命题的序号是 . 答案 ①②③ 4.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.证明:PB⊥平面DEF.试判断四面体DBEF是不是鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由. 解析 因为PD⊥底面ABCD,所以PD⊥BC, 由底面ABCD为长方形,得BC⊥CD,因为PD∩CD=D, 所以BC⊥平面PCD,因为DE⊂平面PCD,所以BC⊥DE. 又因为PD=CD,点E是PC的中点,所以DE⊥PC. 因为PC∩BC=C,所以DE⊥平面PBC. 因为PB⊂平面PBC,所以PB⊥DE. 又PB⊥EF,DE∩EF=E, 所以PB⊥平面DEF. 由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体DBEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB. 考点二 平面与平面垂直的判定与性质 5.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,给出下列结论: ①AD∥平面PBC; ②平面PAC⊥平面PBD; ③平面PAB⊥平面PAC; ④平面PAD⊥平面PDC. 其中正确结论的序号是 . 答案 ①②④ 6.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点. (1)求证:PA⊥BD; (2)求证:平面BDE⊥平面PAC; (3)当PA∥平面BDE时,求三棱锥E-BCD的体积. 解析 (1)证明:因为PA⊥AB,PA⊥BC,AB∩BC=B, 所以PA⊥平面ABC.因为BD⊂平面ABC,所以PA⊥BD. (2)证明:因为AB=BC,D为AC的中点, 所以BD⊥AC.由(1)知,PA⊥BD,又AC∩PA=A,所以BD⊥平面PAC.因为BD⊂平面BDE,所以平面BDE⊥平面PAC. (3)因为PA∥平面BDE,平面PAC∩平面BDE=DE,所以PA∥DE.因为D为AC的中点,所以DE=12PA=1,BD=DC=2. 由(1)知,PA⊥平面ABC,所以DE⊥平面ABC.所以三棱锥E-BCD的体积V=13×12BD·DC·DE=13. 7.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点. (1)求证:PE⊥BC; (2)求证:平面PAB⊥平面PCD; (3)求证:EF∥平面PCD. 证明 (1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC. (2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD.所以AB⊥PD.又因为PA⊥PD,PA∩AB=A,所以PD⊥平面PAB.因为PD⊂平面PCD,所以平面PAB⊥平面PCD. (3)取PC的中点G,连接FG,DG. 因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形.所以EF∥DG.又因为EF平面PCD,DG⊂平面PCD,所以EF∥平面PCD. 综合篇知能转换 【综合集训】 考法一 证明直线与平面垂直的方法 1.(2017课标全国Ⅲ,10,5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( ) A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 答案 C 2.(2018课标全国Ⅱ,19,12分)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点. (1)证明:PO⊥平面ABC; (2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离. 解析 (1)证明:因为AP=CP=AC=4,O为AC的中点, 所以OP⊥AC,且OP=23. 连接OB,因为AB=BC=22AC, 所以△ABC为等腰直角三角形, 且OB⊥AC,OB=12AC=2. 由OP2+OB2=PB2知,OP⊥OB. 由OP⊥OB,OP⊥AC且OB∩AC=O知PO⊥平面ABC. (2)作CH⊥OM,垂足为H. 又由(1)可得OP⊥CH, 所以CH⊥平面POM. 故CH的长为点C到平面POM的距离. 由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°. 所以OM=253,CH=OC·MC·sin∠ACBOM=455. 所以点C到平面POM的距离为455. 3.(2019 5·3原创题)如图,在以P为顶点,母线长为2的圆锥中,底面圆O的直径AB长为2,点C在圆O所在平面内,且AC是圆O的切线,BC交圆O于点D,连接PD,OD. (1)求证:PB⊥平面PAC; (2)若AC=233,求点O到平面PBD的距离. 解析 (1)证明:因为AB是圆O的直径,AC与圆O切于点A,所以AC⊥AB. 又在圆锥中,PO垂直于底面圆O, 所以PO⊥AC,而PO∩AB=O, 所以AC⊥平面PAB,从而AC⊥PB. 在三角形PAB中,PA=PB=2,AB=2, 故有PA2+PB2=AB2,所以PA⊥PB,又PA∩AC=A, 所以PB⊥平面PAC. (2)解法一:作OE⊥BD于E,连接PE.又PO⊥BD,PO∩OE=O,所以BD⊥平面POE.又BD⊂平面PBD,所以平面PBD⊥平面POE,作OF⊥PE于F,因为平面PBD∩平面POE=PE,所以OF⊥平面PBD,故OF的长为点O到平面PBD的距离. 连接AD.在Rt△POE中,PO=1,OE=12AD=AB·AC2BC=12,所以OF=PO·OEPE=55.即点O到平面PBD的距离为55. 解法二:因为AB=2,AC=233,AC⊥AB,所以在直角△ABC中,∠ABC=π6.又OD=OB=1,则△OBD是等腰三角形,所以BD=3,S△OBD=12×1×1×sin2π3=34.又PB=PD=2,所以S△PBD=12×3×52=154,设点O到平面PBD的距离为d,由VP-OBD=VO-PBD,即13S△OBD·PO=13S△PBD·d,可得d=55.解法三:因为AB=2,AC=233,AC⊥AB, 所以S△ABC=12×2×233=233.又由(1)可知,AC⊥平面PAB,则AC⊥PA,所以PC=2+43=303.又PB⊥平面PAC,所以PB⊥PC,则S△PBC=12×2×303=153.设点O到平面PBD的距离为d,则A到平面PBC的距离为2d,由VP-ACB=VA-PBC, 即13S△ABC·PO=13S△PBC·2d,可得d=55. 考法二 平面与平面垂直的判定与性质问题 4.(2018广东六校4月联考,18)如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,AB=BC=1,∠BAD=120°,PB=PC=2,PA=2,E,F分别是AD,PD的中点. (1)证明:平面EFC⊥平面PBC; (2)求二面角A-BC-P的余弦值. 解析 (1)证明:取BC的中点G,连接PG,AG,AC, ∵PB=PC,∴PG⊥BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠ABC=60°.又AB=BC=1,∴△ABC是等边三角形,∴AG⊥BC.∵AG∩PG=G,∴BC⊥平面PAG, ∴BC⊥PA.(3分) ∵E,F分别是AD,PD的中点,∴EF∥PA,易知四边形EAGC为平行四边形,∴EC∥AG,∴BC⊥EF,BC⊥EC, ∵EF∩EC=E,∴BC⊥平面EFC,(5分)∵BC⊂平面PBC,∴平面EFC⊥平面PBC.(6分) (2)由(1)知PG⊥BC,AG⊥BC,∴∠PGA是二面角A-BC-P的平面角.(7分)∵PG=2-14=72,AG=32,PA=2, ∴在△PAG中,cos∠PGA=PG2+AG2-PA22PG·AG=-217,(11分) ∴二面角A-BC-P的余弦值为-217.(12分) 5.(2019北京,18,14分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点. (1)求证:BD⊥平面PAC; (2)若∠ABC=60°,求证:平面PAB⊥平面PAE; (3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由. 解析 (1)因为PA⊥平面ABCD,所以PA⊥BD.又因为底面ABCD为菱形,所以BD⊥AC.所以BD⊥平面PAC. (2)因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.所以AE⊥平面PAB.所以平面PAB⊥平面PAE. (3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连接CF,FG,EG.则FG∥AB,且FG=12AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE. 【五年高考】 考点一 直线与平面垂直的判定与性质 1.(2019北京,13,5分)已知l,m是平面α外的两条不同直线.给出下列三个论断: ①l⊥m;②m∥α;③l⊥α. 以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 答案 若l⊥m,l⊥α,则m∥α(答案不唯一) 2.(2019课标全国Ⅱ,17,12分)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1. (1)证明:BE⊥平面EB1C1; (2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积. 解析 本题考查了长方体的性质、直线与平面垂直的判定与性质和锥体的体积,考查了空间想象能力,主要体现了逻辑推理和直观想象的核心素养. (1)由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1. (2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6. 作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3. 所以,四棱锥E-BB1C1C的体积V=13×3×6×3=18. 思路分析 (1)由长方体的性质易得B1C1⊥BE,再利用直线与平面垂直的判定定理求证;(2)求该四棱锥的体积的关键是求高,利用平面与平面垂直的性质定理,可知只需过E作B1B的垂线即可得高. 解题关键 由长方体的性质找BE的垂线和平面BB1C1C的垂线是求解的关键. 3.(2019天津,17,13分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3. (1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD; (2)求证:PA⊥平面PCD; (3)求直线AD与平面PAC所成角的正弦值. 解析 本题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.以线面角的计算为依托考查数学运算与直观想象的核心素养. (1)证明:连接BD,易知AC∩BD=H,BH=DH. 又由BG=PG,故GH∥PD.又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD. (2)证明:取棱PC的中点N,连接DN. 依题意,得DN⊥PC. 又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA. 又已知PA⊥CD,CD∩DN=D,所以PA⊥平面PCD. (3)连接AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角. 因为△PCD为等边三角形,CD=2且N为PC的中点, 所以DN=3. 又DN⊥AN,在Rt△AND中,sin∠DAN=DNAD=33. 所以,直线AD与平面PAC所成角的正弦值为33. 思路分析 (1)在△BPD中证明GH∥PD,从而利用线面平行的判定定理证线面平行;(2)取棱PC的中点N,连接DN,有DN⊥PC,由面面垂直的性质,得DN⊥平面PAC,从而得DN⊥PA,进而得出结论;(3)由(2)知所求角为∠DAN,在Rt△AND中求其正弦值即可. 考点二 平面与平面垂直的判定与性质 4.(2018江苏,15,14分)在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1. 求证:(1)AB∥平面A1B1C; (2)平面ABB1A1⊥平面A1BC. 证明 (1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1. 因为AB平面A1B1C,A1B1⊂平面A1B1C, 所以AB∥平面A1B1C. (2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形. 又因为AA1=AB,所以四边形ABB1A1为菱形, 所以AB1⊥A1B. 因为AB1⊥B1C1,BC∥B1C1, 所以AB1⊥BC. 又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC, 所以AB1⊥平面A1BC, 又因为AB1⊂平面ABB1A1, 所以平面ABB1A1⊥平面A1BC. 5.(2018课标全国Ⅲ,19,12分)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由. 解析 本题考查平面与平面垂直的判定与性质、直线与平面平行的判定与性质. (1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM. 因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM. 又BC∩CM=C,所以DM⊥平面BMC. 而DM⊂平面AMD,故平面AMD⊥平面BMC. (2)当P为AM的中点时,MC∥平面PBD. 证明如下:连接AC交BD于O. 因为ABCD为矩形,所以O为AC中点. 连接OP,因为P为AM中点,所以MC∥OP. MC⊄平面PBD,OP⊂平面PBD, 所以MC∥平面PBD. 易错警示 使用判定定理和性质定理进行推理证明时要使条件完备. 疑难突破 解决线面平行的探索性问题的策略: (1)通过观察确定点或直线的位置(如中点,中位线),再进行证明. (2)把要得的平行当作已知条件,用平行的性质去求点、线. 6.(2017山东,18,12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD. (1)证明:A1O∥平面B1CD1; (2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1. 证明 (1)取B1D1的中点O1,连接CO1,A1O1, 由于ABCD-A1B1C1D1是四棱柱,四边形ABCD为正方形,O为AC与BD的交点, 所以A1O1∥OC,A1O1=OC, 因此四边形A1OCO1为平行四边形, 所以A1O∥O1C. 又O1C⊂平面B1CD1,A1O平面B1CD1, 所以A1O∥平面B1CD1. (2)因为AC⊥BD,E,M分别为AD和OD的中点, 所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD, 所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1, 又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1. 方法总结 证明面面垂直的方法: 1.面面垂直的定义; 2.面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β). 易错警示 a∥b,a∥α⇒/ b∥α. 教师专用题组 1.(2018浙江,8,4分)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则( ) A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1 答案 D 2.(2019浙江,8,4分)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B的平面角为γ,则( ) A.β<γ,α<γ B.β<α,β<γ C.β<α,γ<α D.α<β,γ<β 答案 B 3.(2015浙江,17,15分)如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点. (1)证明:A1D⊥平面A1BC; (2)求二面角A1-BD-B1的平面角的余弦值. 解析 (1)证明:设E为BC的中点,连接A1E,AE,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE. 因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC. 由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以A1AED为平行四边形. 故A1D∥AE. 又因为AE⊥平面A1BC,所以A1D⊥平面A1BC. (2)作A1F⊥BD且A1F∩BD=F,连接B1F. 由AE=EB=2,∠A1EA=∠A1EB=90°,得A1B=A1A=4. 由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等. 由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1-BD-B1的平面角. 由A1D=2,A1B=4,∠DA1B=90°,得BD=32,A1F=B1F=43,由余弦定理得cos∠A1FB1=-18. 4.(2014课标Ⅰ,19,12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值. 解析 (1)证明:连接BC1,交B1C于点O,连接AO.因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C及BC1的中点. 又AB⊥B1C,所以B1C⊥平面ABO.由于AO⊂平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1. (2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO. 又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两垂直. 以O为坐标原点,OB的方向为x轴正方向,|OB|为单位长,建立如图所示的空间直角坐标系O-xyz. 因为∠CBB1=60°,所以△CBB1为等边三角形,又AB=BC,则A0,0,33,B(1,0,0),B10,33,0,C0,-33,0. AB1=0,33,-33,A1B1=AB=1,0,-33,B1C1=BC=-1,-33,0.设n=(x,y,z)是平面AA1B1的法向量, 则n·AB1=0,n·A1B1=0,即33y-33z=0,x-33z=0.所以可取n=(1,3,3). 设m是平面A1B1C1的法向量,则m·A1B1=0,m·B1C1=0. 同理可取m=(1,-3,3).则cos查看更多