- 2021-06-30 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2016届高考数学(理)大一轮复习达标训练试题:课时跟踪检测(三十九) 合情推理与演绎推理
课时跟踪检测(三十九) 合情推理与演绎推理 一、选择题 1.(2015·合肥模拟)正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理( ) A.结论正确 B.大前提不正确 C.小前提不正确 D.全不正确 2.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn=nm”类比得到“a·b=b·a”; ②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”; ③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”; ④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”; ⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”; ⑥“=”类比得到“=”. 以上的式子中,类比得到的结论正确的个数是( ) A.1 B.2 C.3 D.4 3.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( ) A.28 B.76 C.123 D.199 4.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间可以得到类似结论:已知正四面体PABC的内切球体积为V1,外接球体积为V2,则=( ) A. B. C. D. 5.下列推理中属于归纳推理且结论正确的是( ) A.设数列{an}的前n项和为Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推断:Sn=n2 B.由f(x)=xcos x满足f(-x)=-f(x)对∀x∈R都成立,推断:f(x)=xcos x为奇函数 C.由圆x2+y2=r2的面积S=πr2,推断:椭圆+=1(a>b>0)的面积S=πab D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n∈N*,(n+1)2>2n 6.(2015·西安五校联考)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( ) A.(7,5) B.(5,7) C.(2,10) D.(10,1) 二、填空题 1 2 3 4 5 6 7 8 9 10 …… 7.(2015·福建厦门模拟)已知等差数列{an}中,有=,则在等比数列{bn}中,会有类似的结论:__________________________________________. 8.将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n(n≥3)行从左至右的第3个数是________. 9.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按下图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么类比得到的结论是________. 10.如果函数f(x)在区间D上是凸函数,那么对于区间D内的任意x1,x2,…,xn,都有≤f.若y=sin x在区间(0,π)上是凸函数,那么在△ABC中,sin A+sin B+sin C的最大值是________. 三、解答题 11.在锐角三角形ABC中,求证: sin A+sin B+sin C>cos A+cos B+cos C. 12.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin213°+cos217°-sin 13°cos 17°; ②sin215°+cos215°-sin 15°cos 15°; ③sin218°+cos212°-sin 18°cos 12°; ④sin2(-18°)+cos248°-sin(-18°)cos 48°; ⑤sin2(-25°)+cos255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数; (2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 答案 1.选C 因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确. 2.选B ①②正确,③④⑤⑥错误. 3.选C 记an+bn=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123. 4.选D 正四面体的内切球与外接球的半径之比为1∶3,故=. 5.选A 选项A由一些特殊事例得出一般性结论,且注意到数列{an}是等差数列,其前n项和等于Sn==n2,选项D中的推理属于归纳推理,但结论不正确. 6.选B 依题意,把“整数对”的和相同的分为一组,不难得知第n组中每个“整数对”的和均为n+1,且第n组共有n个“整数对”,这样的前n组一共有个“整数对”,注意到<60<,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7),选B. 7.解析:由等比数列的性质可知b1b30=b2b29=…=b11b20, ∴=. 答案:= 8.解析:前n-1行共有正整数1+2+…+(n-1)=个,即个,因此第n行从左至右的第3个数是全体正整数中第+3个,即为. 答案: 9.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S+S+S=S. 答案:S+S+S=S 10.解析:由题意知,凸函数满足 ≤f, 又y=sin x在区间(0,π)上是凸函数,则sin A+sin B+sin C≤3sin=3sin=. 答案: 11.证明:∵△ABC为锐角三角形, ∴A+B>,∴A>-B, ∵y=sin x在上是增函数, ∴sin A>sin=cos B, 同理可得sin B>cos C,sin C>cos A, ∴sin A+sin B+sin C>cos A+cos B+cos C. 12.解:(1)选择②式,计算如下: sin215°+cos215°-sin 15°cos 15°=1-sin 30° =1-=. (2)法一:三角恒等式为 sin2α+cos2(30°-α)-sin α·cos(30°-α)=. 证明如下: sin2α+cos2(30°-α)-sin α·cos(30°-α) =sin2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α) =sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α =sin2α+cos2α =. 法二:三角恒等式为 sin2α+cos2(30°-α)-sin α·cos(30°-α)=. 证明如下: sin2α+cos2(30°-α)-sin αcos(30°-α) =+-sin α·(cos 30°cos α+sin 30°sin α) =-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α =-cos 2α++cos 2α+sin 2α-sin 2α-(1-cos 2α) =1-cos 2α-+cos 2α=.查看更多