- 2021-06-30 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
安徽省皖南八校2013届高三第二次联考(12月)数学(理)试题
皖南八校2013届高三第二次联考 数学试卷(理) 考生注意: 1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间120分 钟. 2. 答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚. 3. 考生作答时,请将答案答在答题卷上.第I卷每小题选出答案后,用2B铅笔把答题卷上 对应题目的答案标号涂黑;第II卷请用直径0. 5毫米黑色墨水签字笔在答題卷上各题 第I卷(选择题共50分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1. 等于 A. 1+I B. —1+I C. 1-i D. -1—i 2. 已知集合,B=,则集合B中的元素 个数为 A.2 B. 3 C. 4 D. 5 3. 已知各项均为正数的等差数列中,,则納的最小值为 A.7 B. 8 C. 9 D. 10[来源:学科网ZXXK] 4. 已知某8个数的平均数为5,方差为2,现又加入一个新数据5,此时这9个数的平均数为, 方差为S2,则 A. B. C. D. 5. 已知命题:“如果,则”是假命题,那么字母x,y,z在空间所表示的几何图形 只可能是 A全是直线 B全是平面 C x,z是直线y是平面 D x,y是平面,z是直线 6. “2012”含有数字0,1,2,且有两个数字2,则含有数字0,1,2,且有两个 相同数字2或1的四位数的个数为 A.18 B 24 C. 27 D. 36[来源:学科网ZXXK] 7. 执行如图所示的程序框图,若输出的结果是9,则判断框内m的取值 范围是 A. (42,56] B. (56,72] C-(72,90] D. (42,90) 8•设命题p:命题,若P是q的充分不必要条件,则k的取值范围是 A(0,3] B. (0,6] C. (0,5] D. [1,6] 9. 过双曲线的左焦点F作直线交双曲线的两条渐近线与A,B两点,若,则双曲线的离心率为 A.B.C. 2 a 10. 已知函数设,且函数F(x)的零点均在区间内,圆的面积的最小值是 A. B. C. D. 第II卷(非选择题共100分) 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卷中的横线上. 11.展开式中不含X3项的系数的和为 ___▲____. 12. 已知几何体的三视图如图所示,可得这个几何体的体积是___▲___. 13. 设非零向量a、b,c,满足,则= ___▲___ 14. 已知函数的图象关于直线对称,点是函数图象的一个对称中心,则的最小值是 ___▲___. 15. 若函数y=f(x)对定义域的每一个值x1,都存在唯一的x2,使成立,则 称此函数为“滨湖函数”.下列命题正确的是 ___▲___.(把你认为正确的序号都填上) ①是“滨湖函数”;[来源:Zxxk.Com] ②.I是“滨湖函数”;[来源:学+科+网Z+X+X+K] ③是“滨湖函数”; ④是“滨湖函数”; ⑤都是“滨湖函数”,且定义域相同,则是“滨湖函数” 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答 题卷上的指定区域内. 16. (本小题满分12分) ΔABC中,角A,B、C对边分别是a、b、c,满足. (1) 求角A的大小; (2) 求的最大值,并求取得最大值时角B、C的大小. 17. (本小题满分12分) 如图,已知平行四边形ABCD中,AD=2,,垂足为E,沿直线AE将ΔBAE翻折成, 使得平面平面AECD.连结,P是上的点 (1) 当时,求证平面; (2) 当时,求二面角P—AC—D的余弦值. 18. (本小题满分12分) 某电视台举办的闯关节目共有五关,只有通过五关才能获得奖金,规定前三关若有失败即结 束,后两关若有失败再给一次从失败的关开始继续向前闯的机会.已知某人前三关每关通过的概率都是,后两关每关通过的概率都是. (1) 求该人获得奖金的概率; (2)设该人通过的关数为,求随机变量的分布列及数学期望. 19. (本小题满分13分) 已知抛物线P的方程是,过直线l:y=-1上任意一点A作抛物线的切线,设切点分 别为B、C. (1) 证明:ΔABC是直角三角形; (2) 证明:直线BC过定点,并求出定点坐标. 20. (本小题满分13分) 已知函数,其中a〉0. (1) 求f(x)的单调区间; (2) 是否存在实数a使在上恒成立?若存在求出a的取值范围;若不存在 说明理由. 21. (本小题满分13分) 已知正项数列中a1=1,前n项和Sn满足;数列{bn}是首项和公比都等于2的等比数列. (1) 求数列的通项公式;[来源:学,科,网] (2) 求数列的前n项和 (3) 记,求证:查看更多