- 2021-06-30 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
江苏省南通市通州区2020届高三调研抽测试题 数学
2020届高三第二次调研抽测 数学I 参考公式: 柱体的体积公式V柱体=Sh,其中S为柱体的底面积,h为高。 一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应位置。 1.己知复数z满足z(1+2i)=3+4i(i为虚数单位),则|z|= 。 2.已知集合A={1,a2,4},B={2a,0},若A∩B≠,则实数a的值为 。 3.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为 。 4.执行如图所示的伪代码,则输出的结果为 。 5.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为 。 6.函数的定义域为 。 7.已知双曲线的右准线与渐近线的交点在抛物线y2=2px上,则实数p的值为 。 8.已知高为3的圆柱内接于一个直径为5的球内,则该圆柱的体积为 。 9.已知等比数列{an}的各项均为正数,若a3=2,则a1+2a5的最小值为 。 10.在平面直角坐标系xOy中,已知圆C:x2+(y-1)2=1,圆C':。直线l:y=kx+3与圆C相切,且与圆C'相交于A,B两点,则弦AB的长为 。 11.已知函数f(x)=(2|x|-1),若关于x的不等式f(x2-2x-2a)+f(ax-3)≤0对任意的x∈[1,3]恒成立,则实数a的取值范围是 。 12.在△ABC中,已知a,b,c分别是角A,B,C的对边。若a,b,c成等比数列,且(b+c)(b-c)=a2-ac,则的值为 。 13.如图,己知半圆O的直径AB=8,点P是弦AC(包含端点A,C)上的动点,点Q在弧上。若△OAC是等边三角形,且满足,则的最小值为 。 14.若函数f(x)=x2+ax+b(a,b∈R)在区间(0,1]上有零点x0,则的最大值为 。 二、解答题:本大题共6小题,共90分。请在答题卡指定区域内作答。解答时应写出文字说明、证明过程或演算步骤。 15.(本小题满分14分) 如图,在平面直角坐标系xOy中,A为单位圆与x轴正半轴的交点,P为单位圆上一点,且∠AOP=α,将点P沿单位圆按逆时针方向旋转角β后到点Q(a,b),其中β∈。 (1)若点P的坐标为,β=时,求ab的值; (2)若,求b2-a2的取值范围。 16.(本小题满分14分) 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E, F分别是棱AB,PC的中点。求证: (1)EF//平面PAD; (2)平面PCE⊥平面PCD。 17.(本小题满分14分) 中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展。已知某条高铁线路通车后,发车时间间隔t(单位:分钟)满足5≤t≤25,t∈N*。经测算,高铁的载客量与发车时间间隔t相关:当20≤t≤25时高铁为满载状态,载客量为1000人;当5≤t<20时,载客量会在满载基础上减少,减少的人数与(20-t)2成正比,且发车时间为5分钟时的载客量为100人。记发车间隔时间为t分钟时,高铁载客量为P(t)。 (1)求P(t)的表达式; (2)若该线路发车时间间隔t分钟时的净收入Q(t)=P(t)-40t2+650t-2000(元),当发车时间间隔为多少时,单位时间的净收益最大。 18.(本小题满分16分) 在平面直角坐标系中,已知椭圆C:的离心率为,右焦点F到右准线的距离为3。 (1)求椭圆C的方程; (2)过点F作直线l(不与x轴重合)和椭圆C交于M,N两点,设点A(,0)。 ①若△AMN的面积为,求直线l方程; ②过点M作与y轴垂直的直线l'和直线NA交于点P,求证:点P在一条定直线上。 19.(本小题满分16分) 己知函数f(x)=lnx+2ax(a∈R),g(x)=x2+1-2f(x)。 (1)当a=-1时, ①求函数f(x)在点A(1,f(1))处的切线方程; ②比较f(m)与f()的大小; (3)当a>0时,若对x∈(1,+∞)时,g(x)≥0,且g(x)有唯一零点,证明:a<。 20.(本小题满分16分) 己知数列{an}的前n项积为Tn,满足(n∈N*)。数列{bn}的首项为2,且满足nbn+1=(n+1)bn(n∈N*)。 (1)求数列{an},{bn}的通项公式; (2)记集合M={n|λan≤bnbn+1(10n+5),n∈N*},若集合M的元素个数为2,求实数λ的取值范围; (3)是否存在正整数p,q,r,使得a1+a2+…+aq=bp+r·aq成立?如果存在,请写出p,q,r满足的条件;如果不存在,请说明理由。 2020届高三第二次调研抽测 数学II(附加题) 21.本题包括A,B共2小题,每小题10分,共20分。把答案写在答题卡相应的位置上。 解答时应写出文字说明、证明过程或演算步骤。 A.选修4-2:矩阵与变换 设点(x,y)在矩阵M对应变换作用下得到点(2x,x+y)。 (1)求矩阵M; (2)若直线l:x-2y=5在矩阵M对应变换作用下得到直线l',求直线l'的方程。 B.选修4-4:极坐标与参数方程 在平面直角坐标系xOy中,己知直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数,a≠0)。若直线l与曲线C恒有公共点,求实数a的取值范围。 22.【必做题】本题满分10分。解答时应写出文字说明、证明过程或演算步骤。 某校高一年级模仿《中国诗词大会》节目举办学校诗词大会,进入正赛的条件为:电脑随机抽取10首古诗,参赛者能够正确背诵6首及以上的进入正赛。若学生甲参赛,他背诵每一首古诗的正确的概率均为。 (1)求甲进入正赛的概率; (2)若进入正赛,则采用积分淘汰制,规则是:电脑随机抽取4首古诗,每首古诗背诵正确加2分,错误减1分。由于难度增加,甲背诵每首古诗正确的概率为,求甲在正赛中积分X的概率分布列及数学期望。 23.【必做题】本题满分10分。解答时应写出文字说明、证明过程或演算步骤。 已知抛物线C;y2=2x的焦点为F,准线为l,P为抛物线C上异于顶点的动点。 (1)过点P作准线l的垂线,垂足为H,若△PHF与△POF的面积之比为2:1,求点P的坐标; (2)过点M(-,0)任作一条直线m与抛物线C交于不同的两点A,B。若两直线PA,PB斜率之和为2,求点P的坐标。查看更多