高考数学【理科】真题分类详细解析版专题12 概率(原卷版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学【理科】真题分类详细解析版专题12 概率(原卷版)

专题12 概率 ‎【2013高考真题】‎ ‎(2013·新课标I理)3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )‎ A、简单随机抽样 B、按性别分层抽样 C、按学段分层抽样 D、系统抽样 ‎(2013·新课标Ⅱ理)(14)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=________.‎ ‎(2013·上海理)10.设非零常数d是等差数列的公差,随机变量等可能地取值,则方差 ‎(2013·上海理)8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)‎ ‎(2013·陕西理)4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )‎ ‎ (A) 11 (B) 12 (C) 13 (D) 14‎ ‎(2013·山东理)14.在区间上随机取一个数,使得成立的概率为____.‎ ‎(2013·辽宁理)(16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .‎ ‎(2013·辽宁理)(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,‎ 数据的分组一次为 若低于60分的人数是15人,则该班的学生人数是 ‎(A) (B) (C) (D)‎ ‎(2013·湖南理)2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )‎ A.抽签法 B.随机数法 C.系统抽样法 D.分层抽样法 ‎ ‎(2013·广东理)4.已知离散型随机变量的分布列为 X P ‎ 则的数学期望 ( )‎ A . B. C. D.‎ ‎(2013·福建理)11. 利用计算机产生~之间的均匀随机数,则事件‘’‎ 的概率为_________‎ ‎ (2013·北京理)16.( 本小题共13分)下图是某市‎3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择‎3月1日至3月13日中的某一天到达该市,并停留2天 ‎(Ⅰ)求此人到达当日空气重度污染的概率 ‎(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.‎ ‎(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)‎ ‎(2013·安徽理)(5)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )‎ ‎(A)这种抽样方法是一种分层抽样 ‎(B)这种抽样方法是一种系统抽样 ‎(C)这五名男生成绩的方差大于这五名女生成绩的方差 ‎(D)该班级男生成绩的平均数小于该班女生成绩的平均数 ‎(2013·大纲理)20.(本小题满分12分)‎ 甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结束相互独立,第1局甲当裁判.‎ ‎(Ⅰ)求第4局甲当裁判的概率;‎ ‎(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.‎ ‎(2013·福建理)16.(本小题满分13分)‎ 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。‎ (1) 若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;‎ (2) 若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?‎ ‎(2013·广东理)17.(本小题满分12分)‎ 某车间共有名工人,随机抽取名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.‎ ‎ ‎ ‎ ‎ ‎ ‎ 第17题图 ‎(Ⅰ) 根据茎叶图计算样本均值;‎ ‎(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.‎ 根据茎叶图推断该车间名工人中有几名优秀工人;‎ ‎(Ⅲ) 从该车间名工人中,任取人,求恰有名优秀 工人的概率.‎ ‎(2013·湖南理)18.(本小题满分12分)‎ 某人在如图4所示的直角边长为‎4米 的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:‎ X ‎1‎ ‎2‎ ‎3‎ ‎4‎ Y ‎51‎ ‎48‎ ‎45‎ ‎42‎ 这里,两株作物“相近”是指它们之间的直线距离不超过‎1米。‎ ‎(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;‎ ‎(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。‎ ‎(2013·安徽理)(21)(本小题满分13分)某高校数学系计划在周六和周日各举行一张老师所发活动通知信息的学生人数为 ‎(Ⅰ)求该系学生甲收到李老师或张老师所发活动通知信息的概率;‎ ‎(Ⅱ)求使取得最大值的整数。‎ ‎(2013·江西理)18.(本小题满分12分)‎ 小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从,(如图)这8个点中任取两点分别分终点得到两个向量,记这两个向量的数量积为X。若X=0就参加学校合唱团,否则就参加学校排球队。‎ ‎(1)求小波参加学校合唱团的概率;‎ ‎(2)求X的分布列和数学期望.‎ ‎(2013·辽宁理)19.(本小题满分12分)‎ 现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. ‎ ‎(I)求张同学至少取到1道乙类题的概率;‎ ‎(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.‎ ‎(2013·山东理)19.(本小题满分12分)‎ ‎ 甲、乙两支排球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是。假设各局比赛结果相互独立。‎ ‎(Ⅰ)分别求甲队以胜利的概率;‎ ‎(Ⅱ)若比赛结果为求或,则胜利方得分,对方得分;若比赛结果为,则胜利方得分、对方得分。求乙队得分的分布列及数学期望。‎ ‎(2013·陕西理)19. (本小题满分12分) 在一场娱乐晚会上, 有5位民间歌手(1至5. ‎ ‎ (Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率; ‎ ‎ (Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望. ‎ ‎(Ⅰ)问中考查了“观众甲选中3号歌手且观众乙未选中3号歌手”互斥事件同时发生的概率,也可以利用树形图解决。(Ⅱ)问中要注意分布列性质运用,验证概率总合是否为1。此类问题在高考中属于常考重点题型,必须熟练掌握。. ‎ 学期望. ‎ ‎ ‎ ‎(2013·浙江理)19.设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,‎ 取出一个黄球2分,取出蓝球得3分。‎ ‎(Ⅰ)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,.求分布列;‎ ‎(Ⅱ)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求 ‎(2013·新课标Ⅱ理)(19)(本小题满分12分)‎ 经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示。经销商为下一个销售季度购进了130t该农产品。以x(单位:t,100≤x≤150)表示下一个销售季度内经销该农产品的数量,T表示利润.‎ ‎(Ⅰ)将T表示为x的函数 ‎(Ⅱ)根据直方图估计利润T不少于57000元的概率;‎ ‎(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x,则取x=105,且x=105的概率等于需求量落入[100,110,求T的数学期望.‎ ‎(2013·新课标I理)19、(本小题满分12分)‎ 一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。‎ 假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立 ‎(1)求这批产品通过检验的概率;‎ ‎(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。‎ ‎(2012·浙江卷)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,‎ ‎2012·重庆卷)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).‎ ‎(2012·上海卷)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).‎ ‎(2012·江苏卷)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.‎ ‎(2012·福建卷)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2‎ 年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:‎ 品牌 甲 乙 首次出现故 障时间x(年)‎ ‎0<x≤1‎ ‎1<x≤2‎ x>2‎ ‎0<x≤2‎ x>2‎ 轿车数量(辆)‎ ‎2‎ ‎3‎ ‎45‎ ‎5‎ ‎45‎ 每辆利润(万元)‎ ‎1‎ ‎2‎ ‎3‎ ‎1.8‎ ‎2.9‎ 将频率视为概率,解答下列问题:‎ ‎(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;‎ ‎(2012·广东卷)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是(  )‎ A. B. C. D. ‎(2012·辽宁卷)在长为‎12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于‎32 cm2的概率为(  )‎ A. B. C. D. ‎(2012·北京卷)设不等式组表示的平面区域为D,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(  )‎ A. B. C. D. ‎(2012·福建卷)如图1-1所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为(  )‎ 图1-1‎ A. B. C. D. ‎(2012·湖北卷)如图1-3所示,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是(  )‎ 图1-3‎ A.1- B.- C. D. ‎(2012·湖南卷)函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图1-5所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.‎ ‎(1)若φ=,点P的坐标为,则ω=________;‎ ‎(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为________.‎ 图1-5‎ ‎(2012·陕西卷)图1-3是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入(  )‎ 图1-3‎ A.P= B.P= C.P= D.P= ‎(2012·重庆卷)设f(x)=a ln x++x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.‎ ‎(1)求a的值;‎ ‎(2)求函数f(x)的极值.‎ ‎(2012·重庆卷)设f(x)=a ln x++x+1,其中a∈R,曲线y=f(x)在点(1,f(1))‎ 处的切线垂直于y轴.‎ ‎(1)求a的值;‎ ‎(2)求函数f(x)的极值.‎ ‎(2012·湖南卷)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.‎ 一次购 物量 ‎1至 ‎4件 ‎5至 ‎8件 ‎9至 ‎12件 ‎13至 ‎16件 ‎17件及 以上 顾客数(人)‎ x ‎30‎ ‎25‎ y ‎10‎ 结算时间 ‎(分钟/人)‎ ‎1‎ ‎1.5‎ ‎2‎ ‎2.5‎ ‎3‎ 已知这100位顾客中一次购物量超过8件的顾客占55%.‎ 顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)‎ ‎(2012·安徽卷)某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类型试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题.以X表示两次调题工作完成后,试题库中A类型试题的数量.‎ ‎(1)求X=n+2的概率;‎ ‎(2)设m=n,求X的分布列和均值(数学期望).‎ ‎(2012·课标全国卷)某一部件由三个电子元件按图1-4方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为________.‎ 图1-4‎ ‎(2012·浙江卷)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.‎ ‎(1)求X的分布列;‎ ‎(2)求X的数学期望E(X).‎ ‎(2012·江苏卷)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.‎ ‎(1)求概率P(ξ=0);‎ ‎(2)求ξ的分布列,并求其数学期望E(ξ).‎ ‎(2012·江西卷)如图1-4,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,.‎ ‎(1)求V=0的概率;‎ ‎(2)求V的分布列及数学期望EV.‎ ‎(2012·全国卷)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.‎ ‎(1)求开始第4次发球时,甲、乙的比分为1比2的概率;‎ ‎(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.‎ ‎(2012·重庆卷)设f(x)=a ln x++x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.‎ ‎(1)求a的值;‎ ‎(2)求函数f(x)的极值.‎ ‎(2012·陕西卷)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:‎ 办理业务所需的时间(分)‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 频率 ‎0.1‎ ‎0.4‎ ‎0.3‎ ‎0.1‎ ‎0.1‎ 从第一个顾客开始办理业务时计时.‎ ‎(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;‎ ‎(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.‎ ‎(2012·辽宁卷)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.‎ 图1-6‎ 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.‎ ‎(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?‎ 非体育迷 体育迷 合计 男 女 ‎10‎ ‎55‎ 合计 ‎(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).‎ 附:χ2=,‎ P(χ2≥k)‎ ‎0.05‎ ‎0.01‎ k ‎3.841‎ ‎6.635‎ ‎(2012·课标全国卷)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.‎ ‎(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;‎ ‎(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:‎ 日需求量n ‎14‎ ‎15‎ ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ 频数 ‎10‎ ‎20‎ ‎16‎ ‎16‎ ‎15‎ ‎13‎ ‎10‎ 以100天记录的各需求量的频率作为各需求量发生的概率.‎ 由.‎ ‎(2012·湖南卷)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.‎ 一次购物量 ‎1至4件 ‎5至8件 ‎9至12件 ‎13至16件 ‎17件及以上 顾客数(人)‎ x ‎30‎ ‎25‎ y ‎10‎ 结算时间(分钟/人)‎ ‎1‎ ‎1.5‎ ‎2‎ ‎2.5‎ ‎3‎ 已知这100位顾客中一次购物量超过8件的顾客占55%.‎ ‎(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;‎ ‎(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)‎ ‎(2012·湖北卷)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:‎ 降水量X X<300‎ ‎300≤X<700‎ ‎700≤X<900‎ X≥900‎ 工期延 误天数Y ‎0‎ ‎2‎ ‎6‎ ‎10‎ 历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:‎ ‎(1)工期延误天数Y的均值与方差;‎ ‎(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.‎ ‎(2012·广东卷)某班50位学生期中考试数学成绩的频率分布直方图如图1-4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].‎ ‎(1)求图中x的值;‎ ‎(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.‎ 图1-4‎ ‎(2012·安徽卷)某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类型试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中 ‎(2012·福建卷)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:‎ 品牌 甲 乙 首次出现故 障时间x(年)‎ ‎0<x≤1‎ ‎1<x≤2‎ x>2‎ ‎0<x≤2‎ x>2‎ 轿车数量(辆)‎ ‎2‎ ‎3‎ ‎45‎ ‎5‎ ‎45‎ 每辆利润(万元)‎ ‎1‎ ‎2‎ ‎3‎ ‎1.8‎ ‎2.9‎ 将频率视为概率,解答下列问题:‎ ‎(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;‎ ‎(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;‎ ‎(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.‎ ‎(2012·山东卷)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2‎ 分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.‎ ‎(1)求该射手恰好命中一次的概率;‎ ‎(2)求该射手的总得分X的分布列及数学期望EX.‎ ‎(2012·天津卷)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.‎ ‎(1)求这4个人中恰有2人去参加甲游戏的概率;‎ ‎(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;‎ ‎(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.‎ 图1-4‎ ‎(2012·浙江卷)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.‎ ‎(1)求X的分布列;‎ ‎(2)求X的数学期望E(X).‎ ‎(2012·天津卷)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者的分布列与数学期望Eξ.‎ 图1-4‎ ‎(2012·湖北卷)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:‎ 降水量X X<300‎ ‎300≤X<700‎ ‎700≤X<900‎ X≥900‎ 工期延 误天数Y ‎0‎ ‎2‎ ‎6‎ ‎10‎ 历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:‎ ‎(1)工期延误天数Y的均值与方差;‎ ‎(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.‎ ‎(2012·山东卷)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.‎ ‎(1)求该射手恰好命中一次的概率;‎ ‎(2)求该射手的总得分X的分布列及数学期望EX.‎ ‎(2012·陕西卷)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:‎ 办理业务所需的时间(分)‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 频率 ‎0.1‎ ‎0.4‎ ‎0.3‎ ‎0.1‎ ‎0.1‎ 从第一个顾客开始办理业务时计时.‎ ‎(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;‎ ‎(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.‎ ‎(2012·‎ 北京卷)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):‎ ‎“厨余垃圾”箱 ‎“可回收物”箱 ‎“其他垃圾”箱 厨余垃圾 ‎400‎ ‎100‎ ‎100‎ 可回收物 ‎30‎ ‎240‎ ‎30‎ 其他垃圾 ‎20‎ ‎20‎ ‎60‎ ‎(1)试估计厨余垃圾投放正确的概率;‎ c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.‎ 注:s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,xn的平均数 ‎(2012·辽宁卷)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.‎ 图1-6‎ 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.‎ ‎(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?‎ 非体育迷 体育迷 合计 男 女 ‎10‎ ‎55‎ 合计 ‎(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).‎ 附:χ2=,‎ P(χ2≥k)‎ ‎0.05‎ ‎0.01‎ k ‎3.841‎ ‎6.635‎ ‎(2012·四川卷)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.‎ ‎(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;‎ ‎(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.‎ ‎1. (2011年高考广东卷理科6)甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得 冠军的概率为( )‎ A. B. C. D.‎ ‎2.(2011年高考湖北卷理科7)如图,用K、A1、A2三类不同的元件连成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 A.0.960 B.‎0.864 ‎C.0.720 D.0.576‎ ‎3.(2011年高考陕西卷理科10)甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ‎ ‎(A) (B) (C) (D)‎ ‎4. (2011年高考四川卷理科12)在集合中任取一个偶数和一个奇数构成以原点为起点的向量a=(a,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过的平行四边形的个数为,则( )‎ ‎(A) (B) (C) (D)‎ ‎ ‎ ‎5.(2011年高考浙江卷理科15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率为,且三个公司是否让其面试是相互独立的。记 为该毕业生得到面试得公司个数。若,则随机变量的数学期望 ‎ ‎6. (2011年高考江西卷理科12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为 ‎ ‎7. (2011年高考湖南卷理科15)如图4,EFGH是以O为圆心,半径为1的圆内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1) ;(2) .‎ ‎; ;8. (2011年高考湖北卷理科12)在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期的概率为 (结果用最简分数表示)‎ ‎ ‎ ‎.‎ ‎9.(2011年高考重庆卷理科13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为 ‎ ‎10.(2011年高考安徽卷江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______‎ ‎ ‎ ‎11. (2011年高考山东卷理科18)(本小题满分12分)‎ 红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。‎ ‎(Ⅰ)求红队至少两名队员获胜的概率;‎ ‎(Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望.‎ ‎12. (2011年高考天津卷理科16)(本小题满分13分)‎ 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)‎ ‎(Ⅰ)求在一次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;‎ ‎(Ⅱ)求在两次游戏中获奖次数的分布列及数学期望.‎ ‎[来源:学科网ZXXK]‎ ‎ 13.(2011年高考江西卷理科16)(本小题满分12分)‎ 某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4‎ 杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.‎ ‎ (1)求X的分布列;‎ ‎ (2)求此员工月工资的期望.‎ X ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ P ‎14.(2011年高考湖南卷理科18)(本小题满分12分)某商店试销某种商品20天,获得如下数据:‎ 日销售量(件)‎ ‎0‎ ‎1‎ ‎2‎ ‎3‎ 频数 ‎1‎ ‎5‎ ‎9‎ ‎5‎ 试销结束后(假设该商品的日销售量的分布规律不变).设某天开始营业时由该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.‎ 求当天商店不进货的概率;‎ 记为第二天开始营业时该商品视为件数,求的分布列和数学期望.‎ ‎15. (2011年高考广东卷理科17)(本小题满分13分)‎ 为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:‎ 计乙厂生产的优等品的数量;‎ ‎(3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).‎ ‎26.(2011年高考陕西卷理科20)(本小题满分13分)‎ 如图,A地到火车站共有两条路径 和 ,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:‎ 时间(分钟)‎ 的频率 ‎0.1‎ ‎0.2‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ ‎ 的频率 ‎0‎ ‎0.1‎ ‎0.4‎ ‎0.4‎ ‎0.1‎ 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。‎ ‎(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?‎ ‎(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望。‎ 网]‎ ‎26. (2011年高考全国卷理科18) (本小题满分12分)(注意:在试题卷上作答无效)‎ 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立 ‎(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;‎ ‎(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求的期望。 ‎ ‎27.(2011年高考福建卷理科19)(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 ‎(I)已知甲厂产品的等级系数X1的概率分布列如下所示:‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ P ‎0.4‎ a b ‎0.1‎ 且X1的数字期望EX1=6,求a,b的值;‎ ‎(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:‎ ‎ 3 5 3 3 8 5 5 6 3 4‎ ‎ 6 3 4 7 5 3 4 8 5 3‎ ‎8 3 4 3 4 4 7 5 6 7‎ 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.‎ ‎ (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.‎ 注:(1)产品的“性价比”=;‎ ‎ (2)“性价比”大的产品更具可购买性.‎ ‎(2010辽宁理数)(3)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 ‎(A) (B) (C) (D)‎ ‎(2010江西理数)11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,‎ 第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为 ξ ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;‎ ‎(Ⅱ)求,的值;‎ ‎(Ⅲ)求数学期望ξ。‎ ‎(2010四川理数)(17)(本小题满分12分)w_w w. k#s5_u.c o*m 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。‎ ‎(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;‎ ‎(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.‎ ‎(2010天津理数)(18).(本小题满分12分)‎ 某射手每次射击击中目标的概率是,且各次射击的结果互不影响。‎ ‎(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率 ‎(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;‎ ‎(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。‎ ‎(2010江苏卷)22.本小题满分10分)‎ 某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。‎ (1) 记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;‎ (2) 求生产4件甲产品所获得的利润不少于10万元的概率。‎ ‎ ( 2009·山东理)在区间-1,1:上随机取一个数x,的值介于0到之间的概率为( ).‎ A. B. C. D. ‎ ‎ ( 2009·山东文)在区间上随机取一个数x,的值介于0到之间的概率为( ).‎ A. B. C. D. ‎ ‎(2009·安徽理)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 ‎ ‎(A) (B) (C) (D)‎ ‎(2009·江苏)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.‎3m的概率为 . ‎ ‎(2009·广东理)(本小题满分12分)‎ 根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:‎ 对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间,,,,,进行分组,得到频率分布直方图如图5. ‎ ‎(1)求直方图中的值; ‎ ‎(2)计算一年中空气质量分别为良和轻微污染的天数;‎ ‎(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.‎ ‎(结果用分数表示.已知,, ,)‎ ‎14.(2009·浙江理)(本题满分14分)在这个自然数中,任取个数.‎ ‎ (I)求这个数中恰有个是偶数的概率;‎ ‎(II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数 和,此时的值是).求随机变量的分布列及其数学期望.‎ ‎ ( 2009·山东理)(本小题满分12分)‎ 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为 ‎ ‎ ‎0 ‎ ‎2 ‎ ‎3 ‎ ‎4 ‎ ‎5 ‎ p ‎ ‎0.03 ‎ P1 ‎ P2 ‎ P3 ‎ P4 ‎ (1) 求q的值; ‎ (2) 求随机变量的数学期望E;‎ (3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3‎ 分的概率的大小。‎ ‎18.(2009·安徽文)(本小题满分12分)‎ ‎ 某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照 A B ‎9 7‎ ‎35‎ ‎8 7‎ ‎36‎ ‎3‎ ‎5‎ ‎37‎ ‎1 4‎ ‎8‎ ‎38‎ ‎3 5 6‎ ‎9 2‎ ‎39‎ ‎1 2 4 457 7‎ ‎5 0‎ ‎40‎ ‎0 1 1 3 6 7‎ ‎5 4 2‎ ‎41‎ ‎0 2 5 6‎ ‎7 3 3 1‎ ‎42‎ ‎2‎ ‎4 0 0‎ ‎43‎ ‎0‎ ‎5 5 3‎ ‎44‎ ‎4 1‎ ‎45‎ ‎(2009·宁夏海南理)(本小题满分12分)‎ 某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。‎ ‎(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人; ‎ ‎(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.‎ 表1:‎ 生产能力分组 人数 ‎4‎ ‎8‎ ‎5‎ ‎3‎ 表2:‎ 生产能力分组 人数 ‎ 6‎ ‎ y ‎ 36‎ ‎ 18‎ ‎(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论) ‎ ‎(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表) ‎ ‎(2008·山东理)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 ‎(A)                (B)‎ ‎(C)               (D)‎ ‎2.(2008·江苏)一个骰子连续投2次,点数和为4的概率为 。‎ ‎3.(2008·江苏)在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于 ‎2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随意投一点,则落入E中的概率为 。‎
查看更多

相关文章

您可能关注的文档