【数学】2020届一轮复习人教B版(文)7-2空间几何体的表面积和体积作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习人教B版(文)7-2空间几何体的表面积和体积作业

课时作业39 空间几何体的表面积和体积 ‎ [基础达标]‎ 一、选择题 ‎1.若圆锥的侧面展开图是圆心角为120°,半径为l的扇形,则这个圆锥的表面积与侧面积比是(  )‎ A.3:2 B.2:1‎ C.4:3 D.5:3‎ 解析:底面半径r=l=l,故圆锥中S侧=πl2,S表=πl2+π2=πl2,所以表面积与侧面积的比为4:3.‎ 答案:C ‎2.[2019·东北三省四市联考]某几何体的三视图如图所示,则其表面积为(  )‎ A.12+2 B.8+2 C.4+4 D.8+4 解析:本题考查三视图及几何体的表面积.由三视图可知,该几何体是底面为正方形,一条棱垂直于底面的四棱锥,其底面边长为2,高为2,故该四棱锥的表面积为S=2×2+2××2×2+2××2×2=8+4,故选D.‎ 答案:D ‎3.[2019·益阳市,湘潭市高三调研]如图,网格纸上小正方体的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积是(  )‎ A. B. C. D.4‎ 解析:由三视图可得三棱锥为图中所示的三棱锥A-PBC(放到棱长为2的正方体中),VA-PBC=×S△PBC×AB=××2×2×2=.故选B.‎ 答案:B ‎4.[2019·开封市高三考试]某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为(  )‎ A. B. C. D. 解析:由三视图知该几何体底面扇形的圆心角为120°,即该几何体是某圆锥的三分之一部分,又由侧视图知几何体的高为4,底面圆的半径为2,所以该几何体的体积V=××π×22×4=π,故选D.‎ 答案:D ‎5.[2019·山东潍坊模拟]某几何体的三视图如图所示,则该几何体的表面积为(  )‎ A.4+2 B.4+4 C.6+2 D.6+4 解析:由三视图还原几何体和直观图如图所示,易知BC⊥平面PAC,又PC⊂平面PAC,所以BC⊥PC,又AP=AC=BC=2,所以PC==2,又AB=2,所以S△PBC=S△PAB=×2×2=2,S△ABC=S△PAC=×2×2=2,所以该几何体的表面积为4+4.‎ 答案:B ‎6.[2019·福州模拟]已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一球面上,则这个球的体积等于(  )‎ A.π B.π C.16π D.32π 解析:设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.‎ 答案:B ‎7.[2019·福州模拟]如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为(  )‎ A.14 B.10+4 C.+4 D.+4 解析:解法一 由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S=2×+×(22-12)+×22+2×2+××()2=+4,故选D.‎ 解法二 由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S=S三棱柱表-S三棱锥侧+S三棱锥底=-3×+××()2=+4,故选D.‎ 答案:D ‎8.[2019·山西八校联考]已知一个球的表面上有A,B,C三个点,且AB=AC=BC=2,若球心到平面ABC的距离为1,则该球的表面积为(  )‎ A.20π B.15π C.10π D.2π 解析:设球心为O,△ABC的中心为O′,因为AB=AC=BC=2,所以AO′=×3=2,因为球心到平面ABC的距离为1,所以OO′=1,所以AO==,故该球的表面积S=4π×(OA)2=20π.故选A.‎ 答案:A ‎9.[2019·石家庄摸底考试]如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的体积为(  )‎ A. B. C.8(2π+1) D.16(π+1)‎ 解析:由三视图得该几何体为圆锥与正四棱锥的组合体,其中圆锥的底面半径为2,高为4,正四棱锥的底面边长为2,高为2,所以该几何体的体积为×2×2×2+×π×22×4=,故选B.‎ 答案:B ‎10.[2019·南昌调研]已知三棱锥P-ABC的所有顶点都在球O的球面上,△ABC满足AB=2,∠ACB=90°,PA为球O的直径且PA=4,则点P的底面ABC的距离为(  )‎ A. B.2 C. D.2 解析:取AB的中点O1,连接OO1,如图,在△ABC中,AB=2,∠ACB=90°,所以△ABC所在小圆O1是以AB为直径的圆,所以O1A=,且OO1⊥AO1,又球O的直径PA=4,所以OA=2,所以OO1==,且OO1⊥底面ABC,所以点P到平面ABC的距离为2OO1=2.‎ 答案:B 二、填空题 ‎11.[2019·南昌模拟]如图,直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若将直角梯形绕BC边旋转一周,则所得几何体的表面积为________.‎ 解析:本题考查几何体的表面积.所得几何体的表面积是底面圆半径为1、高为1的圆柱的下底面积、侧面积和底面圆半径为1、高为1的圆锥的侧面积之和,即为π+2π+π=(3+)π.‎ 答案:(3+)π ‎12.[2019·山东潍坊模拟]已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为________.‎ 解析:设正四棱柱的底面边长为a,高为h,球的半径为r,由题意知4πr2=12π,所以r2=3,又2a2+h2=(2r)2=12,所以a2=6-,所以正四棱柱的体积V=a2h=h,则V′=6-h2,由V′>0,得02,所以当h=2时,正四棱柱的体积最大,Vmax=8.‎ 答案:2‎ ‎13.[2019·福州四校联考]已知三棱锥A-BCD的所有顶点都在球O的球面上,AB为球O的直径,若该三棱柱的体积为,BC=3,BD=,∠CBD=90°,则球O的体积为________.‎ 解析:设A到平面BCD的距离为h,∵三棱锥的体积为,BC=3,BD=,∠CBD=90°,∴××3××h=,∴h=2,∴球心O到平面BCD的距离为1.设CD的中点为E,连接OE,则由球的截面性质可得OE⊥平面CBD,∵△BCD外接圆的直径CD=2,∴球O的半径OD=2,∴球O的体积为.‎ 答案: ‎14.[2018·江苏卷,10]如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.‎ 解析:本题考查组合体体积的计算.‎ 多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为,高为1,‎ ‎∴其体积为×()2×1=,∴多面体的体积为.‎ 答案: ‎[能力挑战]‎ ‎15.[2019·广东广州调研]如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为(  )‎ A.4+4+2 B.14+4 C.10+4+2 D.4‎ 解析:如图,该几何体是一个底面为直角梯形,有一条侧棱垂直于底面的四棱锥S-ABCD.连接AC,因为AC==2,SC==2,SD=SB==2,CD==2,SB2+BC2=(2)2+42=24=SC2,故△SCD为等腰三角形,△SCB为直角三角形.过D作DK⊥SC于点K,则DK==,△SCD的面积为××2=2,△SBC的面积为×2 ‎×4=4.所求几何体的表面积为×(2+4)×2+2××2×2+4+2=10+4+2,选C.‎ 答案:C ‎16.[2019·河北联盟考试]某几何体的三视图如图所示,则这个几何体的体积是(  )‎ A.13 B.14‎ C.15 D.16‎ 解析:所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD-A′B′C′D′所求,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V=4×2×3-2××3××2=15,故选C.‎ 答案:C ‎17.[2019·广州调研]如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.‎ 解析:依题意可得该几何体的直观图为图中所示的三棱锥B-‎ CDE,且长方体的长、宽、高分别为2,1,1,建立如图所示的空间直角坐标系,则B(0,0,1),C(0,1,0),D(1,2,0),E(0,2,0),设球心为P(x,y,z),依题意可得|PB|=|PC|=|PD|=|PE|.由|PD|=|PE|得(x-1)2+(y-2)2+z2=x2+(y-2)2+z2,解得x=.由|PC|=|PE|得x2+(y-1)2+z2=x2+(y-2)2+z2,解得y=.由|PB|=|PE|得x2+y2+(z-1)2=x2+(y-2)2+z2,解得z=.故P,故三棱锥外接球的半径R=|PB|==,故该三棱锥的外接球的表面积S=4π×=11π.‎ 答案:11π
查看更多

相关文章

您可能关注的文档