2020届二轮复习直线与圆教案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020届二轮复习直线与圆教案(全国通用)

‎2020届二轮复习 直线与圆 教案(全国通用)‎ ‎1.直线方程 ‎(1)直线的倾斜角与斜率的关系 倾斜角α的取值范围:0°≤α<180°.‎ 倾斜角为α(α≠90°)的直线的斜率k=tanα,倾斜角为90°的直线斜率不存在.‎ 当0°<α<90°时,k>0且k随倾斜角α的增大而增大.‎ 当90°<α<180°时,k<0且k随倾斜角α的增大而增大.‎ ‎(2)直线方程 名称 方程 适用范围 点斜式 y-y1=k(x-x1)‎ 不能表示与x轴垂直的直线 斜截式 y=kx+b 不能表示与x轴垂直的直线 两点式 = 不能表示与坐标轴垂直的直线 截距式 +=1‎ 不能表示与坐标轴垂直和过原点的直线 一般式 Ax+By+C=0‎ ‎(A2+B2≠0)‎ 适合所有的直线 ‎(3)两直线的位置关系 位置关系 l1:y=k1x+b1‎ l2:y=k2x+b2‎ l1:A1x+B1y+C1=0‎ l2:A2x+B2y+C2=0‎ 平行 k1=k2,且b1≠b2‎ A1B2-A2B1=0,且B‎1C2-B‎2C1≠0‎ 相交 k1≠k2特别地,l1⊥l2⇒k1k2=-1‎ A1B2≠A2B1特别地,l1⊥l2⇔A‎1A2+B1B2=0‎ 重合 k1=k2且b1=b2‎ A1B2-A2B1=0且B‎1C2-B‎2C1=0‎ ‎(4)距离公式 ‎①两点P1(x1,y1),P(x2,y2)间的距离 ‎|P1P2|=.‎ ‎②点P(x0,y0)到直线l:Ax+By+C=0的距离 d=.‎ ‎2.圆的方程 ‎(1)圆的方程 ‎①标准方程:(x-a)2+(y-b)2=r2,圆心坐标为(a,b),半径为r.‎ ‎②一般方程:x2+y2+Dx+Ey+F=0(D2+E2-‎4F>0),圆心坐标为,半径r=.‎ ‎(2)点与圆的位置关系 ‎①几何法:利用点到圆心的距离d与半径r的关系判断:d>r⇔点在圆外,d=r⇔点在圆上;d0)的位置关系如下表.‎ 方法位置关系 几何法:根据d=与r的大小关系 ‎ 代数法: 消元得一元二次方程,根据判别式Δ的符号 相交 d0‎ 相切 d=r Δ=0‎ 相离 d>r Δ<0‎ ‎(4)圆与圆的位置关系 表现形式 位置关系 几何表现:圆心距d与r1、r2的关系 代数表现:两圆方程联立组成的方程组的解的情况 相离 d>r1+r2‎ 无解 外切 d=r1+r2‎ 一组实数解 相交 ‎|r1-r2|0)将△ABC分割为面积相等的两部分,则b的取值范围是(  )‎ A.(0,1) B. ‎ C. D. 解析 (1)当直线y=ax+b与AB、BC相交时(如图①),由得yE=,又易知xD=-,∴|BD|=1+,由S△DBE=××=得b=∈.‎ ‎  ‎ 图①        图②‎ ‎(2)当直线y=ax+b与AC、BC相交时(如图②),由S△FCG=(xG-xF)·|CM|=得b=1-∈ ‎(∵00恒成立 ,‎ ‎∴b∈∩,即b∈.故选B.‎ 答案 B 高频考点二 两直线的位置关系 例2、【2016高考上海理数】已知平行直线,则的距离___________.‎ ‎【答案】 ‎ ‎【解析】利用两平行线间距离公式得.‎ 已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有(  )‎ A.b=a3 B.b=a3+ C.(b-a3)(b-a3-)=0 D.|b-a3|+|b-a3-|=0‎ 解析 若△OAB为直角三角形,则A=90°或B=90°.‎ 当A=90°时,有b=a3;‎ 当B=90°时,有·=-1,‎ 得b=a3+.‎ 故(b-a3)(b-a3-)=0,选C.‎ 答案 C ‎【变式探究】设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是________.‎ 高频考点三 圆的方程 例3.(2017·天津卷)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为____________.‎ 解析:由题意知该圆的半径为1,设圆心C(-1,a)(a>0),则A(0,a).‎ 又F(1,0),所以=(-1,0),=(1,-a),由题意得与的夹角为120°,‎ 得cos 120°==-,解得a=.‎ 所以圆C的方程为(x+1)2+(y-)2=1.‎ 答案:(x+1)2+(y-)2=1‎ ‎【变式探究】圆的圆心到直线的距离为1,则a=( )‎ ‎(A) (B) (C) (D)2‎ ‎【答案】A ‎【解析】圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:‎ ‎,解得,故选A.‎ ‎ 【变式探究】一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.‎ 解析 由题意知圆过(4,0),(0,2),(0,-2)三点,(4,0),(0,-2)两点的垂直平分线方程为y+1=-2(x-2),‎ 令y=0,解得x=,圆心为,半径为.故圆的标准方程为+y2=.‎ 答案 +y2= 高频考点四 直线与圆、圆与圆的位置关系 例4.(2018年天津卷)已知圆的圆心为C,直线 (为参数)与该圆相交于A,B两点,则的面积为___________.‎ ‎【答案】‎ ‎【解析】由题意可得圆的标准方程为:,‎ 直线的直角坐标方程为:,即,‎ 则圆心到直线的距离:, ‎ 由弦长公式可得:,‎ 则.‎ ‎[变式探究]【2017江苏,13】在平面直角坐标系中,点在圆上,若则点的横坐标的取值范围是 ▲ . ‎ ‎【答案】‎ ‎【解析】设,由,易得,由,可得或,由得P点在圆左边弧上,结合限制条件,可得点P横坐标的取值范围为.‎ ‎【变式探究】如图,在平面直角坐标系xoy中,已知以为圆心的圆及其上一点 ‎(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;‎ ‎(2)设平行于的直线与圆相交于两点,且,求直线的方程;‎ ‎(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。‎ ‎【答案】(1)(2)(3)‎ ‎【解析】‎ 解:圆M的标准方程为,所以圆心M(6,7),半径为5,.‎ ‎(1)由圆心N在直线x=6上,可设.因为N与x轴相切,与圆M外切,‎ 所以,于是圆N的半径为,从而,解得.‎ 因此,圆N的标准方程为.‎ ‎(2)因为直线l∥OA,所以直线l的斜率为.‎ 设直线l的方程为y=2x+m,即2x-y+m=0,‎ 则圆心M到直线l的距离 因为 ‎ 而 ‎ 所以,解得m=5或m=-15.‎ 故直线l的方程为2x-y+5=0或2x-y-15=0.‎ ‎(3)设 ‎ 因为,所以……①‎ 因为点Q在圆M上,所以…….②‎ 将①代入②,得.‎ 于是点既在圆M上,又在圆上,‎ 从而圆与圆没有公共点,‎ 所以解得.‎ 因此,实数t的取值范围是. ‎ ‎【变式探究】过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M、N两点,则|MN|=(  )‎ A.2 B.8 C.4 D.10‎ ‎1. (2018年北京卷)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为 A. 1 B. 2‎ C. 3 D. 4‎ ‎【答案】C ‎【解析】P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.‎ ‎2. (2018年全国Ⅲ卷理数)直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A. B. C. D. ‎ ‎【答案】A ‎【解析】直线分别与轴,轴交于,两点 ‎,则 ‎ 点P在圆上 圆心为(2,0),则圆心到直线距离 故点P到直线的距离的范围为 则 故答案选A.‎ ‎3. (2018年江苏卷)在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________. ‎ ‎【答案】3‎ ‎【解析】设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,‎ 由得或,‎ 因为,所以 ‎4.(2018年天津卷)已知圆的圆心为C,直线 (为参数)与该圆相交于A,B两点,则的面积为___________.‎ ‎【答案】‎ ‎【解析】由题意可得圆的标准方程为:,‎ 直线的直角坐标方程为:,即,‎ 则圆心到直线的距离:,‎ 由弦长公式可得:,‎ 则.‎ ‎1.(2017·北京卷)已知点P在圆x2+y2=1上,点A的坐标为(-2,0),O为原点,则·的最大值为________.‎ ‎2.(2017·天津卷)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为____________.‎ 解析:由题意知该圆的半径为1,设圆心C(-1,a)(a>0),则A(0,a).‎ 又F(1,0),所以=(-1,0),=(1,-a),由题意得与的夹角为120°,‎ 得cos 120°==-,解得a=.‎ 所以圆C的方程为(x+1)2+(y-)2=1.‎ 答案:(x+1)2+(y-)2=1‎ ‎1.【2016高考新课标2理数】圆的圆心到直线的距离为1,则a=( )‎ ‎(A) (B) (C) (D)2‎ ‎【答案】A ‎【解析】圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:‎ ‎,解得,故选A.‎ ‎2.【2016高考上海理数】已知平行直线,则的距离___________.‎ ‎【答案】 ‎ ‎【解析】利用两平行线间距离公式得.‎ ‎3.【2016高考新课标3理数】已知直线: 与圆交于两点,过 分别做的垂线与轴交于两点,若,则__________________.‎ ‎【答案】4‎ ‎4.【2016高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.‎ ‎(I)证明为定值,并写出点E的轨迹方程; ‎ ‎(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.‎ ‎【答案】(Ⅰ)()(II)‎ ‎【解析】(Ⅰ)因为,,故,‎ 所以,故.‎ 又圆的标准方程为,从而,所以.‎ 由题设得,,,由椭圆定义可得点的轨迹方程为:‎ ‎().‎ ‎(Ⅱ)当与轴不垂直时,设的方程为,,.‎ 由得.‎ 则,.‎ 所以.‎ 过点且与垂直的直线:,到的距离为,所以 ‎.故四边形的面积 ‎.‎ 可得当与轴不垂直时,四边形面积的取值范围为.‎ 当与轴垂直时,其方程为,,,四边形的面积为12.‎ 综上,四边形面积的取值范围为.‎ ‎5.【2016高考江苏卷】(本小题满分16分)‎ 如图,在平面直角坐标系中,已知以为圆心的圆及其上一点 ‎(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;‎ ‎(2)设平行于的直线与圆相交于两点,且,求直线的方程;‎ ‎(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。‎ ‎【答案】(1)(2)(3)‎ ‎【解析】‎ 解:圆M的标准方程为,所以圆心M(6,7),半径为5,.‎ ‎(1)由圆心N在直线x=6上,可设.因为N与x轴相切,与圆M外切, ‎ 所以,于是圆N的半径为,从而,解得.‎ 因此,圆N的标准方程为.‎ ‎(2)因为直线l∥OA,所以直线l的斜率为.‎ 设直线l的方程为y=2x+m,即2x-y+m=0,‎ 则圆心M到直线l的距离 因为 ‎ 而 ‎ 所以,解得m=5或m=-15.‎ 故直线l的方程为2x-y+5=0或2x-y-15=0.‎ ‎(3)设 ‎ 因为,所以……①‎ 因为点Q在圆M上,所以…….②‎ 将①代入②,得.‎ 于是点既在圆M上,又在圆上,‎ 从而圆与圆没有公共点,‎ 所以解得.‎ 因此,实数t的取值范围是. ‎ ‎1.(2015·江苏,10)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________.‎ 解析 直线mx-y-2m-1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r==. ‎ 故所求圆的标准方程为 (x-1)2+y2=2.‎ 答案 (x-1)2+y2=2‎ ‎2.(2015·重庆,8)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=(  )‎ A.2 B.4 C.6 D.2 解析 圆C的标准方程为(x-2)2+(y-1)2=4,圆心为C(2,1),半径为r=2,因此2+a×1-1=0,a=-1,即A(-4,-1),|AB|==‎ =6,选C.‎ 答案 C ‎3.(2015·山东,9)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为(  )‎ A.-或- B.-或- C.-或- D.-或- 解析 圆(x+3)2+(y-2)2=1的圆心为(-3,2),半径r=1.(-2,-3)关于y轴的对称点为(2,-3).如图所示,反射光线一定过点(2,-3)且斜率k存在,∴反射光线所在直线方程为y+3=k(x-2),即kx-y-2k-3=0.‎ ‎∵反射光线与已知圆相切,‎ ‎∴=1,整理得12k2+25k+12=0,解得k=-或k=-.‎ 答案 D ‎1. 【2014高考江苏卷第9题】在平面直角坐标系中,直线被圆截得的弦长为 .‎ ‎【答案】‎ ‎【解析】圆的圆心为,半径为,点到直线的距离为,所求弦长为.‎ ‎【考点定位】直线与圆相交的弦长问题. 考点定位】本小题主要考查直线方程的基础知识以及数形结合等数学思想,考查同学们分析问题与解决问题的能力.‎ ‎(2013·新课标Ⅱ理)(9)已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=‎ ‎(A) (B) (C)1 (D)2‎ ‎【答案】B ‎【解析】画出不等式组表示的平面区域如右图所示: ‎ 当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以 ‎,解得,故选B.‎ ‎【 考点定位】本小题考查空间中线线、线面、面面的位置关系的判断,考查同学们的空间想象与逻辑推理能力等数学基本素养,解答的关键是空间想象力.‎ ‎(2013·浙江理)13、设,其中实数满足,若的最大值为12,则实数________。‎ ‎【答案】‎ ‎【解析】此题是线性规划的逆向求解问题,其解法画出不等式组所表示的平面区域后,对目标函数中的进行讨论。此不等式表示的平面区域如下图4所示:,‎ 当时,直线平移到A点时目标函数取最大值,即;当时,直线平移到A或B点时目标函数取最大值,可知k取值是大于零,所以不满足,所以,所以填2;‎ ‎【 考点定位】本小题主要考查圆的极坐标方程与普通方程之间的互化,熟练简单曲线的极坐标是解答本类问题的关键.‎ ‎(2013·天津理)4. 已知下列三个命题: ‎ ‎①若一个球的半径缩小到原来的, 则其体积缩小到原来的;‎ ‎②若两组数据的平均数相等, 则它们的标准差也相等; ‎ ‎③直线x + y + 1 = 0与圆相切. ‎ 其中真命题的序号是: ( )‎ ‎ (A) ①②③ (B) ①②‎ ‎ (C) ①③ (D) ②③‎ ‎【答案】C ‎【解析】由球的体积公式可知:①正确;对③,圆心(0,0)到直线x + y + 1 = 0的距离为,等于圆的半径,故正确;而②是错误的,故选C.‎ ‎【 考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.‎ ‎(2013·陕西理)13. 若点(x, y)位于曲线与y=2所围成的封闭区域, 则2x-y的最小值为 . ‎ ‎【答案】-4。‎ ‎【解析】作出曲线与所表示的区域,令,即,作直线,在封闭区域内平行移动直线,当经过点时,取到最小值,此时最小值为.解题的关键在于画出曲线围成的封闭区域,并把求的最小值转化为求所表示的直线截距的最大值,通过平移直线即可求解.‎ ‎【 ‎ ‎【 考点定位】本题考查线性规划下的斜率运算,确定可行域是关键,通过绕旋转来确定最小值点.‎ ‎(2013·江西理)9.过点(,0)引直线ι与曲线 交于A,B两点 ,O为坐标原点,当△AOB的面积取最大值时,直线ι的斜率等于( )‎ A. B.- C. D- ‎【答案】B ‎【解析】画图可知过点(,0)的直线与曲线相切时斜率为-1,所以相交成三角形的直线斜率在(-1,0)之间,故选B.‎ ‎【考点定位】本题主要考查直线与圆的位置关系,考查应用能力和计算能力.‎ ‎(2013·湖南理)11.如图2,在半径为的中,弦 ‎ ‎【答案】;‎ ‎【解析】由相交弦定理可知,,因为 ‎,,即,连接DO,过圆心做CD的垂线交于F,在三角形OFD中
查看更多

相关文章

您可能关注的文档