高考数学人教A版(理)一轮复习:小题专项集训(十四) 直线与圆

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学人教A版(理)一轮复习:小题专项集训(十四) 直线与圆

小题专项集训(十四) 直线与圆 ‎(时间:40分钟 满分:75分)‎ 一、选择题(每小题5分,共50分)‎ ‎1.已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为 (  ).‎ A.1 B. C. D.2‎ 解析 直线l1:x+y+1=0,l2:x+y-1=0间的距离d==,故应选B.‎ 答案 B ‎2.已知圆x2+y2+Dx+Ey=0的圆心在直线x+y=1上,则D与E的关系是 ‎(  ).‎ A.D+E=2 B.D+E=1‎ C.D+E=-1 D.D+E=-2‎ 解析 ∵圆x2+y2+Dx+Ey=0的圆心在直线x+y=1上,∴--=1,即D+E=-2,故应选D.[来源:Z§xx§k.Com]‎ 答案 D ‎3.(2013·济南二模)直线l1:kx+(1-k)y-3=0和l2:(k-1)x+(2k+3)y-2=0互相垂直,则k= (  ).‎ A.-3或-1 B.3或1‎ C.-3或1 D.-1或3‎ 解析 l1⊥l2⇔k(k-1)+(1-k)(2k+3)=0⇔(1-k)(k+3)=0⇔k=1或k=-3.‎ 答案 C ‎4.圆x2+y2-ax+2=0与直线l相切于点A(3,1),则直线l的方程为 (  ).‎ A.2x-y-5=0 B.x-2y-1=0‎ C.x-y-2=0 D.x+y-4=0[来源:学,科,网]‎ 解析 由已知条件可得32+12-3a+2=0,解得a=4,此时圆x2+y2-4x+2=0的圆心为C(2,0),半径为,则直线l的方程为y-1=-(x-3)=-x+3,即得x+y-4=0,故应选D.[来源:学。科。网Z。X。X。K]‎ 答案 D ‎5.(2013·乌鲁木齐三模)在圆x2+y2+2x-4y=0内,过点(0,1)的最短弦所在直线的倾斜角是 (  ).‎ A. B. C. D. 解析 易知圆的圆心为(-1,2),过点(0,1)的最长弦(直径)斜率为-1,且最长弦与最短弦垂直,∴过点(0,1)的最短弦所在直线的斜率为1,倾斜角是.‎ 答案 B ‎6.(2013·安徽省江南十校联考)若点P(1,1)为圆C:(x-3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 (  ).‎ A.2x+y-3=0 B.x-2y+1=0‎ C.x+2y-3=0 D.2x-y-1=0‎ 解析 易知圆的圆心为C(3,0);据圆的垂径定理知MN⊥PC.∵kPC=-,∴kMN=2.∴直线MN方程为:y-1=2(x-1),即2x-y-1=0.‎ 答案 D ‎7.圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是 (  ).‎ A.30 B.18 C.6 D.5[来源:学。科。网Z。X。X。K]‎ 解析 由圆x2+y2-4x-4y-10=0知圆心坐标为(2,2),半径为3.则圆上的点到直线x+y-14=0的最大距离为:+3=5+3,最小距离为:5-3,故最大距离与最小距离的差为6.‎ 答案 C ‎8.(2013·宁德模拟)若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是 (  ).‎ A.4 B.2 C. D. 解析 圆(x+1)2+(y-2)2=4,由直线被圆截得的弦长为4可知直线通过圆心,即2a·(-1)-b·2+2=0,即a+b=1,故+=(a+b)·=2++≥4,当且仅当a=b=时等号成立.‎ 答案 A ‎9.(2013·豫东、豫北十所名校联考)圆心在曲线y=(x>0)上,且与直线3x+4y+3=0相切的面积最小的圆的方程为 (  ).‎ A.(x-2)2+2=9 B.(x-3)2+(y-1)2=2‎ C.(x-1)2+(y-3)2=2 D.(x-)2+(y-)2=9‎ 解析 设所求圆的圆心坐标是(a>0),则点(a>0)到直线3x+4y+3=0的距离d==≥=3,当且仅当3a=,即a=2时取等号,因此所求圆的圆心坐标是,半径是3,所求圆的方程为(x-2)2+2=9,选A.‎ 答案 A ‎10.点P是以F1、F2为焦点的椭圆上一点,过焦点作∠F1PF2外角平分线的垂线.垂足为M,则点M的轨迹是 (  ).‎ A.圆 B.椭圆 C.双曲线 D.抛物线 解析 如图,延长F2M交F1P延长线于N.∵|PF2|=|PN|,∴|F1N|=2a.连结OM,则在△NF1F2中,OM为中位线,则|OM|=|F1N|=a.∴M的轨迹是圆.‎ 答案 A 二、填空题(每小题5分,共25分)‎ ‎11.(2013·常州模拟)过点P(-2,3)且在两坐标轴上的截距相等的直线l的方程为________.‎ 解析 分两种情况:(1)直线l过原点时,l的斜率为-,∴直线方程为y=-x;(2)l不过原点时,设方程为+=1,将x=-2,y=3代入得a=1,∴直线方程为x+y=1.综上:l的方程为x+y-1=0或3x+2y=0.‎ 答案 x+y-1=0或3x+2y=0‎ ‎12.(2013·长春一模)已知直线l1与圆x2+y2+2y=0相切,且与直线l2:3x+4y-6=0平行,则直线l1的方程是________.‎ 解析 ∵l1∥l2,∴可设直线l1:3x+4y+b=0.‎ ‎∵l1与圆x2+(y+1)2=1相切,∴=1,‎ ‎∴b=9或b=-1,[来源:Zxxk.Com]‎ ‎∴l1的方程为3x+4y-1=0或3x+4y+9=0.‎ 答案 3x+4y-1=0或3x+4y+9=0‎ ‎13.过点P(0,-1)作直线l,若直线l与连接A(1,-2),B(2,1)的线段没有公共点,则直线l的倾斜角的取值范围是________.‎ 解析 易知PA的斜率kPA==-1,PB的斜率kPB==1,又直线l与线段AB没有公共点.‎ ‎∴直线l的斜率k的取值范围为k<-1或k>1,‎ 结合正切函数图象得倾斜角的范围是.‎ 答案  ‎14.过点M的直线l与圆C:(x-1)2+y2=4交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程为________.‎ 解析 由题意得,当CM⊥AB时,∠ACB最小,从而直线方程y-1=-,即2x-4y+3=0.‎ 答案 2x-4y+3=0‎ ‎15.(2013·苏州一模)过直线l:y=2x上一点P作圆C:(x-8)2+(y-1)2=2的切线l1,l2,若l1,l2关于直线l对称,则点P到圆心C的距离为________.‎ 解析 如图,据题意,‎ ‎∠1=∠2,∠3=∠4;‎ ‎∵∠1+∠2+∠3+∠4=180°,‎ ‎∴2∠2+2∠3=180°,‎ ‎∴∠2+∠3=90°,‎ ‎∴CP⊥l.∴P到圆心C的距离等于C到l的距离d==3.‎ 答案 3
查看更多

相关文章

您可能关注的文档