2009年高考试题—数学文(全国2)解析版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2009年高考试题—数学文(全国2)解析版

‎2009年普通高等学校招生全国统一考试试卷题 文科数学 第Ⅰ卷(选择题)‎ ‎ 本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。‎ 参考公式: w.w.w.k.s.5.u.c.o.m 如果事件互斥,那么 球的表面积公式 ‎ ‎ ‎ 如果事件相互独立,那么 其中表示球的半径 ‎ 球的体积公式 ‎ 如果事件在一次试验中发生的概率是,那么 ‎ ‎ 次独立重复试验中事件A恰好发生次的概率 其中表示球的半径 一. 选择题 ‎(1)已知全集U={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则Cu( MN)=‎ ‎(A) {5,7} (B) {2,4} (C){‎2.4.8‎} (D){1,3,5,6,7}‎ 答案:C 解析:本题考查集合运算能力。‎ ‎(2)函数y=(x0)的反函数是 ‎ (A)(x0) (B)(x0)‎ ‎ (B)(x0) (D)(x0) ‎ 答案:B 解析:本题考查反函数概念及求法,由原函数x0可知AC错,原函数y0可知D错,选B.‎ ‎(3) 函数y=的图像 ‎ (A) 关于原点对称 (B)关于主线对称 ‎ (C) 关于轴对称 (D)关于直线对称 答案:A 解析:本题考查对数函数及对称知识,由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图像关于原点对称,选A。‎ ‎(4)已知△ABC中,,则 ‎(A) (B) (C) (D) ‎ 答案:D 解析:本题考查同角三角函数关系应用能力,先由cotA=知A为钝角,cosA<0排除A和B,再由选D ‎(5) 已知正四棱柱中,=,为重点,则异面直线 与所形成角的余弦值为 ‎(A) (B) (C) (D) w.w.w.k.s.5.u.c.o.m ‎ 答案:C 解析:本题考查异面直线夹角求法,方法一:利用平移,CD’∥BA',因此求△EBA'中∠A'BE即可,易知EB=,A'E=1,A'B=,故由余弦定理求cos∠A'BE=,或由向量法可求。‎ ‎(6) 已知向量a = (2,1), a·b = 10,︱a + b ︱= ,则︱b ︱=‎ ‎ (A) (B) (C)5 (D)25‎ ‎ 答案:C 解析:本题考查平面向量数量积运算和性质,由知(a+b)2=a2+b2+2ab=50,得|b|=5 选C。‎ ‎(7)设则 ‎(A) (B) (C) (D)‎ 答案:B 解析:本题考查对数函数的增减性,由1>lge>0,知a>b,又c=lge, 作商比较知c>b,选B。‎ ‎(8)双曲线的渐近线与圆相切,则r=‎ ‎(A) (B)2 (C)3 (D)6‎ 答案:A 解析:本题考查双曲线性质及圆的切线知识,由圆心到渐近线的距离等于r,可求r=‎ ‎(9)若将函数的图像向右平移个单位长度后,与函数的图像重合,则的最小值为 ‎(A) (B) (C) (D) w.w.w.k.s.5.u.c.o.m ‎ 答案:D 解析:本题考查正切函数图像及图像平移,由平移及周期性得出ωmin=‎ ‎(10)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有 ‎(A)6种 (B)12种 (C)24种 (D)30种 ‎ 答案:C 解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数=36,再求出两人所选两门都相同和都不同的种数均为=6,故只恰好有1门相同的选法有24种 。‎ ‎(11)已知直线与抛物线C:相交A、B两点,F为C的焦点。若,则k=‎ ‎(A) (B) (C) (D)‎ 答案:D 解析:本题考查抛物线的第二定义,由直线方程知直线过定点即抛物线焦点(2,0),由及第二定义知联立方程用根与系数关系可求k=。‎ ‎(12)纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是 ‎(A)南 (B)北 (C)西 (D)下 ‎△‎ 上 东 ‎ w.w.w.k.s.5.u.c.o.m ‎ ‎ ‎ ‎ ‎ 答案:B 解析:.此题用还原立体图方法直接得出结果,使上在正上方依次找到对应面即可。‎ 第Ⅱ卷(非选择题)‎ 本卷共10小题,共90分。‎ 二.填空题:本大题共4小题,每小题5分,共20分。把答案填写在答题卡上相应位置的横线上.‎ ‎(13)设等比数列{}的前n项和为。若,则= × ‎ 答案:3‎ 解析:本题考查等比数列的性质及求和运算,由得q3=3故a4=a1q3=3。‎ ‎(14)的展开式中的系数为 × w.w.w.k.s.5.u.c.o.m ‎ ‎ 答案:6 ‎ 解析:本题考查二项展开式,直接用公式展开,注意根式的化简。‎ ‎(15)已知圆O:和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于 × ‎ ‎ 答案: ‎ 解析:由题意可直接求出切线方程为y-2=‎ ‎(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和,所以所求面积为。‎ ‎(16)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C。若圆C的面积等于,则球O的表面积等于 × ‎ ‎ 答案:8π 解析:本题考查立体几何球面知识,注意结合平面几何知识进行运算,由 三、解答题:本大题共6小题,共70分。解答题应写出文字说明,证明过程或演算步骤。解答过程写在答题卡的相应位置。‎ ‎(17)(本小题满分10分)‎ 已知等差数列{}中,求{}前n项和. w.w.w.k.s.5.u.c.o.m ‎ 解析:本题考查等差数列的基本性质及求和公式运用能力,利用方程的思想可求解。‎ 解:设的公差为,则w.w.w.k.s.5.u.c.o.m ‎ 即 解得 因此 ‎(18)(本小题满分12分)设△ABC的内角A、B、C的对边长分别为a、b、c,,,求B.‎ 解析:本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出B=。‎ 解:由 cos(AC)+cosB=及B=π(A+C)得 ‎ cos(AC)cos(A+C)=,‎ ‎ cosAcosC+sinAsinC(cosAcosCsinAsinC)=,‎ ‎ sinAsinC=.‎ 又由=ac及正弦定理得w.w.w.k.s.5.u.c.o.m ‎ ‎ ‎ 故 ,‎ ‎ 或 (舍去),‎ 于是 B= 或 B=.‎ 又由 知或 所以 B=。w.w.w.k.s.5.u.c.o.m ‎ ‎(19)(本小题满分12分)w.w.w.k.s.5.u.c.o.m ‎ 如图,直三棱柱ABC-A1B‎1C1中,AB⊥AC,D、E分别为AA1、B‎1C的中点,DE⊥平面BCC1‎ ‎(Ⅰ)证明:AB=AC w.w.w.k.s.5.u.c.o.m ‎ ‎(Ⅱ)设二面角A-BD-C为60°,求B‎1C与平面BCD所成的角的大小 解析:本题考查线面垂直证明线面夹角的求法,第一问可取BC中点F,通过证明AF⊥平面BCC1,再证AF为BC的垂直平分线,第二问先作出线面夹角,即证四边形AFED是正方形可证平面DEF⊥平面BDC,从而找到线面夹角求解。此题两问也可建立空间直角坐标系利用向量法求解。‎ A C B A1‎ B1‎ C1‎ D E 解法一:(Ⅰ)取BC中点F,连接EF,则EF,从而EFDA。‎ 连接AF,则ADEF为平行四边形,从而AF//DE。又DE⊥平面,故AF⊥平面,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC。‎ ‎(Ⅱ)作AG⊥BD,垂足为G,连接CG。由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角。由题设知,∠AGC=600..‎ ‎ 设AC=2,则AG=。又AB=2,BC=,故AF=。‎ 由得2AD=,解得AD=。‎ 故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。‎ 因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。‎ 连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。‎ 连接CH,则∠ECH为与平面BCD所成的角。w.w.w.k.s.5.u.c.o.m ‎ 因ADEF为正方形,AD=,故EH=1,又EC==2,‎ 所以∠ECH=300,即与平面BCD所成的角为300.‎ 解法二:‎ ‎(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz。‎ 设B(1,0,0),C(0,b,0),D(0,0,c),则(1,0,‎2c),E(,,c).‎ 于是=(,,0),=(-1,b,0).由DE⊥平面知DE⊥BC, =0,求得b=1,所以 AB=AC。‎ ‎(Ⅱ)设平面BCD的法向量则 又=(-1,1, 0),‎ ‎=(-1,0,c),故 w.w.w.k.s.5.u.c.o.m ‎ 令x=1, 则y=1, z=,=(1,1, ).‎ 又平面的法向量=(0,1,0)‎ 由二面角为60°知,=60°,‎ 故 °,求得 w.w.w.k.s.5.u.c.o.m ‎ 于是 , ‎ ‎,‎ ‎ °‎ 所以与平面所成的角为30°‎ ‎(20)(本小题满分12分)‎ 某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核。‎ ‎(Ⅰ)求从甲、乙两组各抽取的人数;‎ ‎(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;‎ ‎(Ⅲ)求抽取的4名工人中恰有2名男工人的概率。w.w.w.k.s.5.u.c.o.m ‎ 解析:本题考查概率统计知识,要求有正确理解分层抽样的方法及利用分类原理处理事件概率的能力,第一问直接利用分层统计原理即可得人数,第二问注意要用组合公式得出概率,第三问关键是理解清楚题意以及恰有2名男工人的具体含义,从而正确分类求概率。‎ 解:(I)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人。‎ ‎(II)记表示事件:从甲组抽取的工人中恰有1名女工人,则 ‎ w.w.w.k.s.5.u.c.o.m ‎ ‎(III)表示事件:从甲组抽取的2名工人中恰有名男工人,‎ ‎ 表示事件:从乙组抽取的2名工人中恰有名男工人,‎ ‎ 表示事件:抽取的4名工人中恰有2名男工人。‎ ‎ 与独立, ,且 故 ‎ ‎ ‎ ‎ ‎ ‎(21)(本小题满分12分)‎ 设函数 ,其中常数a>1‎ ‎(Ⅰ)讨论f(x)的单调性;‎ ‎(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围。w.w.w.k.s.5.u.c.o.m ‎ 解析:本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围。‎ 解: (I) w.w.w.k.s.5.u.c.o.m ‎ ‎ 由知,当时,,故在区间是增函数;‎ ‎ 当时,,故在区间是减函数;‎ ‎ 当时,,故在区间是增函数。‎ ‎ 综上,当时,在区间和是增函数,在区间 是减函数。‎ ‎ (II)由(I)知,当时,在或处取得最小值。‎ ‎ ‎ ‎ ‎ ‎ ‎ 由假设知w.w.w.k.s.5.u.c.o.m ‎ ‎ 即 解得 1
查看更多