- 2021-06-25 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学一轮复习练案24第三章三角函数解三角形第五讲函数y=Asinωx+φ的图象及应用含解析
[练案24]第五讲 函数y=Asin (ωx+φ)的图象及应用 A组基础巩固 一、单选题 1.将函数f(x)的图象上所有点向右平移个单位长度,得到函数g(x)的图象.若函数g(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为( C ) A.f(x)=sin(x+) B.f(x)=-cos(2x+) C.f(x)=cos(2x+) D.f(x)=sin(2x+) [解析] 根据函数g(x)的图象可知A=1,T=+=,T=π=,ω=2,所以g(x)=sin(2x+φ),所以g()=sin(+φ)=0,所以+φ=π+kπ,k∈Z,φ=+kπ,k∈Z,又因为|φ|<,所以φ=,所以g(x)=sin(2x+),将g(x)=sin(2x+)的图象向左平移个单位长度后,即可得到函数f(x)的图象,所以函数f(x)的解析式为f(x)=g(x+)=sin[2(x+)+]=sin(+2x+)=cos(2x+). 2.(2020·浙江金华十校期末)要得到函数y=cos (2x+)的图象,只需将函数y=cos 2x的图象( B ) A.向左平移个单位 B.向左平移个单位 C.向右平移个单位 D.向右平移个单位 [解析] ∵y=cos (2x+)=cos [2(x+)],∴要得到函数y=cos (2x+)的图象,只需将函数y=cos 2x的图象向左平移个单位. 3.(2020·河南豫南九校联考)将函数y=sin (x- - 10 - )的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,则所得函数图象的解析式为( B ) A.y=sin (-) B.y=sin (-) C.y=sin (-) D.y=sin (2x-) [解析] 函数y=sin (x-)经伸长变换得y=sin (-),再作平移变换得y=sin [(x-)-]=sin (-). 4.(2020·安徽省宿州市高三上学期检测)已知函数f(x)=Asin (ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,若将函数f(x)的图象上点的纵坐标不变,横坐标缩短到原来的,再向右平移个单位,所得到的函数g(x)的解析式为( D ) A.g(x)=2sin x B.g(x)=2sin 2x C.g(x)=2sin (x-) D.g(x)=2sin (2x-) [解析] 由图象可得A=2,=π,故T=4π,ω=, ∴f(x)=2sin (x+φ),∵点(0,1)在函数的图象上, ∴f(0)=2sin φ=1,∴sin φ=,又0<φ<, ∴φ=,∴f(x)=2sin (x+), 将函数f(x)的图象上点的纵坐标不变,横坐标缩短到原来的所得图象对应的解析式为y=2sin (×4x+)=2sin (2x+),然后再向右平移个单位,所得图象对应的解析式为y=2sin [2(x-)+]=2sin (2x-),即g(x)=2sin (2x-),选D. 5.设函数f(x)=sin (ωx+φ)+cos (ωx+φ)(ω>0,|φ|<)的最小正周期为π,且f(-x)=f(x),则( A ) A.f(x)在(0,)上单调递减 - 10 - B.f(x)在(0,)上单调递增 C.f(x)在(,)上单调递增 D.f(x)在(,π)上单调递减 [解析] f(x)=sin (ωx+φ)+cos (ωx+φ)=sin (ωx+φ+). 由函数f(x)的最小正周期T==π,得ω=2. 由f(-x)=f(x),得φ+=+kπ(k∈Z), 即φ=+kπ(k∈Z). 又∵|φ|<,∴φ=. ∴f(x)=sin (2x+)=cos 2x. 若2x∈(0,π),则x∈(0,), ∴f(x)在(0,)上单调递减.故选A. 6.已知曲线C:y=sin (2x+φ)(|φ|<)的一条对称轴方程为x=,曲线C向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为(,0),则|φ-θ|的最小值是( A ) A. B. C. D. [解析] 因为曲线C:y=sin (2x+φ)(|φ|<)的一条对称方程为x=,所以sin (+φ)=±1,则+φ=+kπ,k∈Z.因为|φ|<,所以φ=.可得曲线C:y=sin (2x+),向左平移θ个单位长度,得曲线E:y=sin (2x+2θ+).由曲线E的对称中心为(,0),得2×+2θ+=kπ,k∈Z,所以θ=kπ-,k∈Z,则|φ-θ|=(k∈Z)的最小值为:.故选A. 二、多选题 7.(2020·辽宁省实验中学期中改编)已知函数y=Asin (ωx+φ)+B(A>0,ω>0,|φ|< - 10 - )的部分图象如图,则下面不正确的是( ABC ) A.A=4 B.ω=1 C.B=4 D.φ= [解析] 根据函数y=Asin (ωx+φ)+B的图象知,A=2,B=2,∴A,C错误;设函数的最小正周期为T,则T=π-=,∴T==π,解得ω=2,B错误;当x=时,ωx+φ=2×+φ=2kπ+(k∈Z),且|φ|<,∴φ=,∴D正确.故选A、B、C. 8.已知函数f(x)=sin ωx+cos ωx(ω>0)的图象相邻两条对称轴之间的距离是,则该函数的一个单调递增区间为( AD ) A.[-,] B.[-,] C.[-,] D.[,] [解析] 根据已知得f(x)=sin ωx+cos ωx=2(sin ωx+cos ωx)=2sin (ωx+).根据相邻两条对称轴之间的距离是,得T=π,所以=π,即ω=2,所以函数f(x)=2sin (2x+).再根据正弦函数的单调性可得该函数的单调递增区间是2kπ-≤2x+≤2kπ+(k∈Z),解得kπ-≤x≤kπ+(k∈Z).令k=0,1即可求得其一个单调递增区间是[-,]、[,].故选A、D. 三、填空题 9.(1)为了得到函数y=sin (x+1)的图象,只需把函数y=sin x的图象上所有的点向__左__平移__1__个单位长度. (2)为了得到函数y=sin (2x+1)的图象,只需把函数y=sin 2x的图象上所有的点向__左__平移 个单位长度. - 10 - 10.已知函数f(x)=2sin (x+φ)(|φ|<)的图象经过点(0,1),则该函数的振幅为__2,周期T为__6,频率为 ,初相φ为 . [解析] 振幅A=2,T==6,f=,因为图象过点(0,1),所以1=2sin φ,所以sin φ=,又|φ|<,所以φ=. 11.(2020·南昌模拟)将函数f(x)=sin (ωx+φ)(ω>0,-<φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sin x的图象,则f()= . [解析] 将y=sin x的图象向左平移个单位长度,再把横坐标伸长到原来的2倍,纵坐标不变,得f(x)=sin (x+),所以f()=sin (·+)=sin =. 12.(2020·重庆模拟)已知函数y=Asin (ωx+φ)(A>0,ω>0,|φ|<)的图象上有一个最高点的坐标为(2,),由这个最高点到其右侧相邻最低点间的图象与x轴交于点(6,0),则此解析式为 y=sin (x+) . [解析] 由题意得:A=,=6-2,T=16,ω==,又sin (×2+φ)=1,+φ=+2kπ(k∈Z), 又|φ|<,所以φ=, 所以函数解析式为y=sin (x+). 四、解答题 13.(2020·江西南昌实验中学月考)已知函数f(x)=2sin (x+). (1)用“五点法”在如图所示的虚线方框内作出函数f(x)在一个周期内的简图(要点:列表与描点,建立直角坐标系); - 10 - (2)函数f(x)的图象可以通过函数g(x)=2cos x的图象经过“先伸缩后平移”的规则变换而得到,请写出一个这样的变换. [解析] (1)列表如下: x - x+ 0 π 2π f(x) 0 2 0 -2 0 图象如图所示: (2)g(x)=2cos x=2sin (x+),先将横坐标伸长为原来的2倍,得到y=2sin (+),再向右平移个单位,得到f(x)=2sin (x+).(答案不唯一) 14.(2020·河北沧州模拟)已知函数f(x)=Asin (ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示. (1)求函数f(x)的解析式,并求它的对称中心的坐标; (2)将函数f(x)的图象向右平移m(0查看更多