2018-2019学年福建省莆田第八中学高二上学期期末考试数学(理)试题 Word版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018-2019学年福建省莆田第八中学高二上学期期末考试数学(理)试题 Word版

‎2018-2019学年福建省莆田第八中学高二上学期期末考试数学(理)‎ 命题:胡云贵 审题:高二备课组 一、选择题:本大题共12小题,每小题5分,满分60分.‎ ‎1.设命题p:∀x∈R,x2+1>0 ,则┐p为(  )‎ A.∃x0∈R,x+1>0   B.∃x0∈R,x+1≤0‎ C.∃x0∈R,x+1<0 D.∀x∈R,x2+1≤0 ‎ ‎2. 数列的通项公式,则该数列的前( )项之和等于.‎ ‎ A. B. ‎ ‎ C. D.‎ ‎3.设变量x,y满足约束条件则目标函数z =3x-y的取值范围是(  )‎ A. B. C.[-1,6] D. ‎4. 下列命题中为真命题的是(  )‎ A.命题“若x>y,则x>|y|”的逆命题 B.命题“若x>1,则x2>1”的否命题 C.命题“若x=1,则x2+x-2=0”的否命题 D.命题“若x2>0,则x>1”的逆否命题 ‎5.如果数列{an}的前n项和Sn=an-3,那么这个数列的通项公式是 (  )‎ A.an=2(n2+n+1) B.an=3·2n C.an=3n+1 D.an=2·3n ‎6.是的 ( )‎ A.必要不充分条件 B.充要条件 ‎ C. 充分不必要条件 D.既非充分又非必要条件 ‎ ‎7.在△ABC中,角A,B,C所对的边分别为a, b,c,若acos A=bsin B,则sin Acos A+cos2B=(  )‎ A.- B. C.-1 D.1‎ ‎8.下列函数中,当取正数时,最小值为2 的是( )‎ A. B.‎ C. D. ‎ ‎9.设双曲线-=1(a>0)的渐近线方程为3x±4y=0,则a的值为(  )‎ A.4 B.3 ‎ C.2 D.1‎ ‎10.已知过抛物线y2=4x的焦点F的直线l与抛物线相交于A,B两点,若线段AB的中点M的横坐标为3,则线段AB的长度为(  )‎ A.6 B.8‎ C.10 D.12‎ ‎11.若函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围是(  )‎ A. B. C. D. ‎12.对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是(  )‎ A.-1是f(x)的零点 B.1是f(x)的极值点 C.3是f(x)的极值 D.点(2,8)在曲线y=f(x)上 二、填空题: 本大题共4小题,每小题5分,满分20分.‎ ‎13.函数f(x)=x2+2x f’(1),则f(1)=_____.‎ ‎14.在正项等比数列中,,则_____.‎ ‎15.曲线f(x)=(x>0)在点(1,f(1))处的切线方程为________________.‎ ‎16.设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且PF1⊥PF2,则 的值为________.‎ 三、解答题:本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤.‎ ‎17.(本小题满分10分)已知p:方程x2+mx+1=0有两个不相等的负实根;q:不等式4x2‎ ‎+4(m-2)x+1>0的解集为R.若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.‎ ‎18.(本小题满分12分)在△ABC中,A,B,C所对的边分别为a,b,c,且a sin A=(b-c)sin B+(c-b)sin C.‎ ‎(1)求角A的大小;‎ ‎(2)若a=,cos B=,D为AC的中点,求BD的长.‎ ‎19. (本小题满分12分)设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.‎ ‎(1)求{an },{bn }的通项公式;‎ ‎(2)求数列的前n项和Sn.‎ ‎20.(本小题满分12分)如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.‎ ‎(1)求证:A1B∥平面ADC1;‎ ‎(2)求二面角C1-AD-C的余弦值;‎ ‎(3)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置;若不存在,说明理由.‎ ‎21.(本小题满分12分)已知函数f(x)=x3-x2+cx+d有极值.‎ ‎(1)求实数c的取值范围;‎ ‎(2)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求实数d的取值范围.‎ ‎ ‎ ‎22.(本小题满分12分)如图,已知中心在原点O,焦点在x轴上的椭圆C的离心率为,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为.‎ ‎(1)求椭圆C的标准方程;‎ ‎(2)已知点E(3,0),设点P,Q是椭圆C上的两个动点,满足EP⊥EQ,求·的取值范围.‎ ‎参考答案 BBAAD CDDAB DA ‎-3 5 3x+y-5=0 2‎ ‎17. 解 p为真命题⇔⇒m>2;‎ q为真命题⇔Δ=[4(m-2)]2-4×4×1<0⇒1
查看更多

相关文章