- 2021-06-25 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
云南省昆明市东川区明月中学2018-2019学年高二下学期期中考试数学(文)试题
2019年春季学期高二年级期中考试文科数学试题 (考试时间:120分钟 满分:150分) 注意事项: 1.答题前,考生务必将自己的相关信息填写在答题卡上; 2.将答案写在答题卡上,写在本试卷上无效。 第I卷(选择题) 一、选择题:共12题,每题5分,共60分,在每题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,则= ( ) A. B. C. D. 2.函数的定义域是 ( ) A. B. C. D. 3.复数的共轭复数对应的点在复平面内位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.设是两条不重合的直线,是两个不重合的平面,则下列命题中不正确的 一个是( ) A.若则∥ B.若,则∥ C.若则 D.若∥,则∥ 5.已知实数满足条件,则的最大值为( ) A. B. C. D. 6.执行如图所示的程序框图,若输入的值为4,则输出的值是( ) A.24 B. C.2 D. 7.已知一个几何体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积为( ) A. B. C. D. 8.设向量满足, ,则( ) A. B. C. D. 9.函数的图象大致为( ) A. B. C. D. 10.已知长方体一个顶点上三条棱的长分别是3、4、5,且它的顶点都在同一球面上,则这个球的表面积是( ) A. B. C. D. 11.过双曲线的右焦点作垂直于轴的直线,交双曲线的渐近线于两点,若(为坐标原点)是等边三角形,则双曲线的离心率为 ( ) A. B. C. D. 12.已知函数,若对任意, 恒成立,则实数的取值范围是 ( ) A. B. C. D. 第II卷(非选择题) 二、填空题:共4题,每题5分,共20分. 13.展开式中常数为 14.设向量,且 ,则=_________ 15.已知函数的部分图象如图,则 16.已知函数,且关于的方程有两个实数根,则实数的取值范围是_______ . 三、解答题:共6题,17题10分,18到22每题12分,共70分. 17.(本题10分)设的内角A、B、C所对的边分别为a、b、c,且. (1)当时,求a的值; (2)当的面积为3时,求a+c的值. 18.(本题12分)已知等差数列的首项为1,公差,且是与的等比中项. (1)求数列的通项公式; (2)记,求数列的前n项和. 19.(本题12分)某校两个班级100名学生在一次考试中的成绩(满分100分)的频率分布直方图如图所示,其中成绩分组区如下表: 组号 第一组 第二组 第三组 第四组 第五组 分组 (1) 求频率表分布直方图中的值; (2) 根据频率表分布直方图,估计这100名学生这次考试成绩的平均分; (3)现用分层抽样的方法从第三、四、五组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率. 20.(本题12分)如图,在三棱柱中,底面,,,,点分别为与的中点. (1) 证明:平面 (2) 求与平面所成角的正弦值. 21.(本题12分)已知椭圆的离心率为,且经过点. (1)求椭圆的标准方程; (2)过点的直线交椭圆于两点,是轴上的点,若是以为斜边的等腰直角三角形,求直线的方程. 22.(本题12分)已知. (1)求函数在点处的切线方程; (2)当时,若不等式对任意恒成立,求实数的取值范围. 2019年春季学期高二年级期中考试文科数学答案 一、选择题(本题共12题,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C C D B A D D A C B B 二、填空题(本题共题,共分) 13. 14. 15. 0 三、解答题 17. (1)..............................................1分 由正弦定理得..............................2分 ................................................................2分 (2) 的面积, .....................................................1分 由余弦定理, 4= ,即...........................2分 ∴, ∴..................2分 18.(1)(2) (I)设数列的公差为, 由,且是与的等比中项得: .........................................2分 舍去.....................................................2分 ,数列的通项公式为............1分 (II)...........................2分 .......................................2分 ...................................................................................................................2分 .................................................................................................................................................1分 19. (1) a=0.005;(2) 74.5; 解:(Ⅰ)10a+0.01×10+0.02×10+0.03×10+0.035×10=1,所以a=0.005.....2分 (Ⅱ)由直方图分数在[50,60]的频率为0.05,[60,70]的频率为0.35,[70,80]的频率为0.30,[80,90]的频率为0.20,[90,100]的频率为0.10,所以这100名学生期中考试数学成绩的平均分的估计值为:55×0.05+65×0.35+75×0.30+85×0.20+95×0.10=74.5................................................................3分 (Ⅲ)由直方图,得: 第3组人数为0.3×100=30,第4组人数为0.2×100=20人,第5组人数为0.1×100=10人...........................................................................................................................................1分 所以利用分层抽样在60名学生中抽取6名学生, 每组分别为:第3组:人,第4组:人,第5组:=1人............................................................................................................................................2分 所以第3、4、5组分别抽取3人、2人、1人. 设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能如下: (A1,A2),(A1,A3),(A1,A3),(A2,A3),(A1,B1),((A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1)...........................................................................................................................................2分 其中恰有1人的分数不低于90分的情形有:(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),共5种.所以其中第4组的2位同学至少有一位同学入选的概率为..........................................................................................................................................2分 20.(1)见解析(2) (1)证明:如图,连接,................................................................................1分 在三棱柱中,为的中点.又因为为的中点, 所以...................................................................................................................2分 又平面,平面,所以平面....2分 (2)解:以为原点建立如图所示的空间直角坐标系..................................1分 则,,,, 所以,,...............................................2分 设平面的法向量为, 则, 令,得..................................................................................................2分 记与平面所成角为,则. .................................................................................................................................2分 21.(1);(2) 试题解析:(1)由,设椭圆方程为.............2分 则,椭圆方程为..........................2分 (2) 设的中点坐标 则由得..............................3分 由得 的中垂线方程为,所以 点到直线的距离为,.................................3分 ,所以,解得 直线的方程为.............................................................................................2分 22.(1);(2). 试题解析: (1)由,则,切点为……...2分 所求切线方程为,即...............................2分 (2)由,原不等式即为, 记,..............................................................1分 依题意有对任意恒成立, 求导得..............................2分 当时,,则在上单调递增,有, 若,则,若在上单调递增,且,适合题意; 若,则,又,故存在使,.............................................................3分 当时,,得在上单调递减,在,舍去.......................................................................1分 综上,实数的取值范围是...............................................................................1分查看更多