【数学】2020届一轮复习人教B版概率与统计综合问题作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习人教B版概率与统计综合问题作业

概率与统计综合问题 ‎1.(2018全国Ⅲ,文5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为(  )‎ ‎                   ‎ A.0.3 B.0.4 C.0.6 D.0.7‎ 答案B 解析设不用现金支付的概率为P,‎ 则P=1-0.45-0.15=0.4.‎ ‎2.从装有3个红球、2个白球的袋中任取3个球,若事件A=“所取的3个球中至少有1个白球”,则事件A的对立事件是(  )‎ A.1个白球、2个红球 B.2个白球、1个红球 C.3个都是红球 D.至少有1个红球 答案C 解析事件A=“所取的3个球中至少有1个白球”说明有白球,白球的个数可能是1或2或3,和事件“1个白球、2个红球”“2个白球、1个红球”“至少有1个红球”都能同时发生,既不互斥,也不对立.故选C.‎ ‎3.有三个兴趣小组,甲、乙两名同学各自参加其中一个小组,每名同学参加各个小组的可能性相同,则这两名同学参加同一个兴趣小组的概率为(  )‎ A. B. C. D.‎ 答案A 解析记三个兴趣小组分别为1,2,3,甲参加兴趣小组1,2,3分别记为“甲1”“甲2”“甲3”,乙参加兴趣小组1,2,3分别记为“乙1”“乙2”“乙3”,则基本事件为“(甲1,乙1),(甲1,乙2),(甲1,乙3),(甲2,乙1),(甲2,乙2),(甲2,乙3),(甲3,乙1),(甲3,乙2),(甲3,乙3)”,共9个,记事件A为“甲、乙两名同学参加同一个兴趣小组”,其中事件A有“(甲1,乙1),(甲2,乙2),(甲3,乙3)”,共3个.因此P(A)=.‎ ‎4.(2018河北石家庄一模)已知函数f(x)=2x(x<0),其值域为D,在区间(-1,2)上随机取一个数x,则x∈D的概率是(  )‎ A. B. C. D.‎ 答案B 解析函数f(x)=2x(x<0)的值域为(0,1),即D=(0,1),则在区间(-1,2)上随机取一个数x,x∈D的概率P=‎ ‎.故选B.‎ ‎5.(2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p,且各件产品是否为不合格品相互独立.‎ ‎(1)记20件产品中恰有2件不合格品的概率为f,求f的最大值点p0.‎ ‎(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.‎ ‎①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);‎ ‎②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?‎ ‎【解析】(1)20件产品中恰有2件不合格品的概率为f(p)=p2(1-p)18.‎ 因此f′(p)=[2p(1-p)18-18p2(1-p)17]=2p(1-p)17(1-10p)(00;‎ 当p∈(0.1,1)时,f′(p)<0.‎ 所以f(p)的最大值点为p0=0.1.‎ ‎(2)由(1)知,p=0.1.‎ ‎①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.‎ 所以E(X)=E(40+25Y)=40+25E(Y)=490.‎ ‎②如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于E(X)>400,故应该对余下的所有产品作检验.‎ ‎6.(2018·衡水模拟)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.‎ ‎(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表).‎ ‎(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布 N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;‎ ‎②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.‎ 附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为σ=≈11.95;‎ ‎②若Z~N(μ,σ2),则 P(μ-σ
查看更多