2020届二轮复习小题考法——不等式课时作业(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020届二轮复习小题考法——不等式课时作业(全国通用)

课时跟踪检测(二十) 小题考法——不等式 A组——10+7提速练 一、选择题 ‎1.在R上定义运算:x⊗y=x(1-y).若不等式(x-a)⊗(x-b)>0的解集是(2,3),则a+b=(  )‎ A.1           B.2‎ C.4 D.8‎ 解析:选C 由题知(x-a)⊗(x-b)=(x-a)[1-(x-b)]>0,即(x-a)[x-(b+1)]<0,由于该不等式的解集为(2,3),所以方程(x-a)[x-(b+1)]=0的两根之和等于5,即a+b+1=5,故a+b=4.‎ ‎2.已知正数a,b的等比中项是2,且m=b+,n=a+,则m+n的最小值是(  )‎ A.3 B.4‎ C.5 D.6‎ 解析:选C 由正数a,b的等比中项是2,可得ab=4,又m=b+,n=a+,所以m+n=a+b++=a+b+=(a+b)≥×2=5,当且仅当a=b=2时等号成立,故m+n的最小值为5.‎ ‎3.设变量x,y满足约束条件则目标函数z=x+2y的最大值为(  )‎ A.5 B.6‎ C. D.7‎ 解析:选C 作出不等式组表示的平面区域如图中阴影部分所示,由图易知,当直线z=x+2y经过直线x-y=-1与x+y=4的交点,即时,z取得最大值,zmax=+2×=,故选C.‎ ‎4.(2018·全国卷Ⅲ)设x,y满足约束条件则z=x-y的取值范围是(  )‎ A.[-3,0] B.[-3,2]‎ C.[0,2] D.[0,3]‎ 解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l0:y=x,平移直线l0,当直线z=x-y过点A(2,0)时,z取得最大值2,当直线z=x-y过点B(0,3)时,z取得最小值-3,所以z=x-y的取值范围是[-3,2].‎ ‎5.(2018·全国卷Ⅱ)设x,y满足约束条件则z=2x+y的最小值是(  )‎ A.-15 B.-9‎ C.1 D.9‎ 解析:选A 作出不等式组表示的可行域如图中阴影部分所示.‎ 易求得可行域的顶点A(0,1),B(-6,-3),C(6,-3),当直线z=2x+y过点B(-6,-3)时,z取得最小值,zmin=2×(-6)-3=-15.‎ ‎6.设不等式组所表示的区域面积为S.若S≤1,则m的取值范围为(  )‎ A.(-∞,-2] B.[-2,0]‎ C.(0,2] D.[2,+∞)‎ 解析:选A 如图,当x+y=1与y=mx交点为(-1,2)时,不等式组所表示的区域面积为1,此时m=-2,若S≤1,则m≤-2,故选A.‎ ‎7.已知实数x,y满足若z=x+2y的最小值为-4,则实数a=(  )‎ A.1 B.2‎ C.4 D.8‎ 解析:选B 作出不等式组表示的平面区域,如图中阴影部分所示,‎ 当直线z=x+2y经过点C时,z取得最小值-4,所以-a+2×=-4,解得a=2,故选B.‎ ‎8.(2019届高三·浙江六校协作体联考)已知函数f(x)=ax3+bx2-x(a>0,b>0)在x=1处取得极小值,则+的最小值为(  )‎ A.4 B.5‎ C.9 D.10‎ 解析:选C 由f(x)=ax3+bx2-x(a>0,b>0),得f′(x)=ax2+bx-1,则f′(1)=a+b-1=0,∴a+b=1,∴+=·(a+b)=5++≥5+2=9,当且仅当=,即a=,b=时,等号成立,故选C.‎ ‎9.(2018·衢州二中交流卷)若实数x,y满足|[x]|+|y|≤1([x]表示不超过x的最大整数),则的取值范围是(  )‎ A. B. C. D. 解析:选A 因为|[x]|≤1-|y|≤1,所以-1≤[x]≤1,再根据[x]的具体值进行分类:‎ ‎①当[x]=-1,即-1≤x<0时,y=0;‎ ‎②当[x]=0,即0≤x<1时,|y|≤1,即-1≤y≤1;‎ ‎③当[x]=1,即1≤x<2时,y=0.‎ 在平面直角坐标系内作出可行域,如图所示.‎ =1+,其几何意义为可行域内的点(x,y)与点(-2,-2)所确定的直线的斜率加1.而由图可知,点(-1,0)与点(-2,-2)所确定的直线的斜率最大,最大值为=2;点(1,-1)与点(-2,-2)所确定的直线的斜率最小,最小值为=,又由图知取不到最小值,所以∈,故选A.‎ ‎10.(2018·天津高考)已知函数f(x)=设a∈R,若关于x的不等式f(x)≥在R上恒成立,则a的取值范围是(  )‎ A. B. C.[-2,2] D. 解析:选A 法一:根据题意,作出f(x)的大致图象,如图所示.‎ 当x≤1时,若要f(x)≥恒成立,结合图象,只需x2-‎ x+3≥-,即x2-+3+a≥0,故对于方程x2-+3+a=0,Δ=2-4(3+a)≤0,解得a≥-;当x>1时,若要f(x)≥恒成立,结合图象,只需x+≥+a,即+≥a.又+≥2,当且仅当=,即x=2时等号成立,所以a≤2.综上,a的取值范围是.‎ 法二:关于x的不等式f(x)≥在R上恒成立等价于-f(x)≤a+≤f(x),‎ 即-f(x)-≤a≤f(x)-在R上恒成立,‎ 令g(x)=-f(x)-.‎ 当x≤1时,g(x)=-(x2-x+3)-=-x2+-3‎ ‎=-2-,‎ 当x=时,g(x)max=-;‎ 当x>1时,g(x)=--=-≤-2,‎ 当且仅当=,且x>1,即x=时,“=”成立,‎ 故g(x)max=-2.‎ 综上,g(x)max=-.‎ 令h(x)=f(x)-,‎ 当x≤1时,h(x)=x2-x+3-=x2-+3‎ ‎=2+,‎ 当x=时,h(x)min=;‎ 当x>1时,h(x)=x+-=+≥2,‎ 当且仅当=,且x>1,即x=2时,“=”成立,‎ 故h(x)min=2.综上,h(x)min=2.‎ 故a的取值范围为.‎ 二、填空题 ‎11.若两个正实数x,y满足+=1,且不等式x+x+≥≥4,故m2-‎3m>4,化简得(m+1)(m-4)>0,解得m<-1或m>4,即实数m的取值范围为(-∞,-1)∪(4,+∞).‎ 答案:(-∞,-1)∪(4,+∞)‎ ‎12.设函数f(x)=则不等式f(x)>f(1)的解集是________________.‎ 解析:由题意得,f(1)=3,所以f(x)>f(1),即f(x)>3.当x<0时,x+6>3,解得-33,解得x>3或0≤x<1.综上,不等式的解集为(-3,1)∪(3,+∞).‎ 答案:(-3,1)∪(3,+∞)‎ ‎13.(2018·绍兴一中调研)已知实数x,y满足则由不等式组确定的可行域的面积为________,z=2x-y的最大值为________.‎ 解析:作出不等式组表示的可行域如图中阴影部分所示,所以可行域的面积为1,因为目标函数z=2x-y的斜率为2,所以过点A(3,0)时取到最大值6.‎ 答案:1 6‎ ‎14.(2018·杭州二中调研)已知x>3y>0或x<3y<0,则(x-2y)2+的最小值是________.‎ 解析:(x-2y)2+≥(x-2y)2+=(x-2y)2+≥8,当4y=x,x-2y=±2时取等号.‎ 答案:8‎ ‎15.如果实数x,y满足条件且z=的最小值为,则正数a的值为________.‎ 解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x=1,y=1时,z取最小值,即=,所以a=1.‎ 答案:1‎ ‎16.(2018·绍兴质量调测)已知正实数x,y满足xy+2x+3y=42,则xy+5x+4y的最小值为________.‎ 解析:由题知,xy+5x+4y=(xy+2x+3y)+3x+y=42+3x+y,‎ 而(x+3)(y+2)=48,因此144=(3x+9)(y+2)≤2,因此3x+y≥13,当且仅当3x+9=y+2,即时取等号.故xy+5x+4y=42+3x+y≥55,则xy+5x+4y的最小值为55.‎ 答案:55‎ ‎17.若不等式|‎2a+b|+|‎2a-b|≥|a|(|2+x|+|2-x|)(a≠0)恒成立,则实数x的取值范围是________.‎ 解析:不等式|‎2a+b|+|‎2a-b|≥|a|(|2+x|+|2-x|)(a≠0)恒成立,即|2+x|+|2-x|≤恒成立,故|2+x|+|2-x|≤min.因为≥==4,当且仅当(‎2a+b)(‎2a-b)≥0,即2|a|≥|b|时等号成立,所以的最小值为4,所以|2+x|+|2-x|≤4,解得-2≤x≤2.故实数x的取值范围为[-2,2].‎ 答案:[-2,2]‎ B组——能力小题保分练 ‎1.已知x,y满足则z=8-x·y的最小值为(  )‎ A.1 B. C. D. 解析:选D 作出不等式组表示的平面区域如图中阴影部分所示,而z=8-x·y=2-3x-y,欲使z最小,只需使-3x-y最小即可.由图知当x=1,y=2时,-3x-y的值最小,且-3×1-2=-5,此时2-3x-y最小,最小值为.故选D.‎ ‎2.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为6,则+ 的最小值为(  )‎ A.1 B.3‎ C.2 D.4‎ 解析:选B 依题意画出不等式组表示的平面区域,如图中阴影部分所示.‎ ‎∵a>0,b>0,‎ ‎∴当直线z=ax+by经过点(2,4)时,z取得最大值6,‎ ‎∴‎2a+4b=6,即a+2b=3.‎ ‎∴+=(a+2b)×=++≥3,当且仅当a=b=1时等号成立,∴+的最小值为3.故选B.‎ ‎3.设不等式组所表示的平面区域为Dn,记Dn内的整点(横坐标和纵坐标均为整数的点)个数为an(n∈N*),若m>++…+对于任意的正整数恒成立,则实数m的取值范围是(  )‎ A. B. C. D. 解析:选A 不等式组表示的平面区域为直线x=0,y=0,y=-nx+3n围成的直角三角形(不含直角边),区域内横坐标为1的整点有2n个,横坐标为2的整点有n个,所以an=3n,所以==,所以++…+==,数列为单调递增数列,故当n趋近于无穷大时,趋近于,所以m≥.故选A.‎ ‎4.设二次函数f(x)=ax2+bx+c的导函数为f′(x).若∀x∈R,不等式f(x)≥f′(x)恒成立,则的最大值为(  )‎ A.+2 B.-2‎ C.2+2 D.2-2‎ 解析:选B 由题意得f′(x)=2ax+b,由f(x)≥f′(x)在R上恒成立,得ax2+(b-‎2a)x+c-b≥0在R上恒成立,则a>0且Δ≤0,可得b2≤‎4ac-‎4a2,则≤= ‎,又‎4ac-‎4a2≥0,∴4·-4≥0,∴-1≥0,令t=-1,则t≥0.当t>0时,≤=≤=-2,当t=0时,=0<-2,故的最大值为-2,故选B.‎ ‎5.(2019届高三·浙江新高考联盟联考)过P(-1,1)的光线经x轴上点A反射后,经过不等式组所表示的平面区域内某点(记为B),则|PA|+|AB|的取值范围是________.‎ 解析:作出不等式组表示的平面区域如图中阴影部分所示,点P关于x轴的对称点为P1(-1,-1),|PA|+|AB|=|P1B|,过点P1作直线x+y-2=0的垂线,则|PA|+|AB|=|P1B|的最小值为=2.由得B0(2,3),则|PA|+|AB|=|P1B|的最大值为|P1B0|==5.‎ 故2≤|PA|+|AB|≤5.‎ 答案:[2,5]‎ ‎6.(2018·浙江“七彩阳光”联盟期中)设实数x,y满足不等式组且目标函数z=3x+y的最大值为15,则实数m=________;设min{a,b}=则z=min{x+y+2,2x+y}的取值范围是________.‎ 解析:因为直线x+y-3=0与x-3y+5=0交于点A(1,2),而直线x+my-1=0过点(1,0),则当m>0时,不等式组不能构成可行域.当m=0时,可行域为点A(1,2),不符合题意.当->,即-3
查看更多

相关文章