- 2021-06-24 发布 |
- 37.5 KB |
- 15页
![](https://data.61taotao.com/file-convert/2020/10/20/04/46/d05b9b2a61febcf9f10319de8ea3656c/img/1.jpg)
![](https://data.61taotao.com/file-convert/2020/10/20/04/46/d05b9b2a61febcf9f10319de8ea3656c/img/2.jpg)
![](https://data.61taotao.com/file-convert/2020/10/20/04/46/d05b9b2a61febcf9f10319de8ea3656c/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】福建省南平市2020届高三上学期第一次综合质量检查试题(理)(解析版)
福建省南平市2020届高三上学期第一次综合质量检查 数学试题(理) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,,则( ) A. B. C. D. 【答案】A 【解析】因为,, 所以. 故选:A. 2.在复平面内,复数对应的点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】C 【解析】因为复数, 所以复数对应的点在第三象限. 故选:C. 3.已知命题:,.则为( ) A. , B. , C. , D. , 【答案】D 【解析】因为:,, 所以:,. 故选:D. 4.下列函数中,既是奇函数又在单调递减的函数是( ) A. B. C. D. 【答案】D 【解析】对A,函数在单调递增,故A不符合; 对B,函数为偶函数,故B不符合; 对C,函数在恒成立,所以在单调递增,故C不符合; 对D,函数既是奇函数又在单调递减,故D符合; 故选:D. 5.已知函数,则函数的图象大致为( ) A. B. C. D. 【答案】C 【解析】因为定义域为,且, 所以为偶函数,故排除A,D; 当时,,故排除B. 故选:C. 6.从区间随机抽取个数,,…,,,,…,,组成坐标平面上的 个点,,…,,其中到原点距离小于的点有个,用随机模拟的方法得到的圆周率的近似值为( ) A. B. C. D. 【答案】C 【解析】由题意得满足的点共个,利用几何概型得, 所以. 故选:C. 7.执行如图所示的程序框图,输出的结果是( ) A. B. C. D. 【答案】B 【解析】, , , , , 此时,再执行,再跳出循环. 故答案为:B. 8.已知非零向量,满足,,,则向量,的夹角为( ) A. B. C. D. 【答案】B 【解析】因为, 所以, 所以向量,的夹角为. 故选:B. 9.设抛物线:焦点为,直线与交于,两点,且,则的值为( ) A. B. C. D. 【答案】A 【解析】设,将直线代入, 消去得:, 所以,, 抛物线:的准线方程为, 因为, 所以. 故选:A. 10.已知函数给出下列三个结论: ①函数的最小正周期是; ②函数在区间上是增函数; ③函数的图像关于点对称. 其中正确结论的个数是( ) A. B. C. D. 【答案】B 【解析】因为. 对①,函数的周期为,故①正确; 对②,因为,所以在上是减函数,故②错误; 对③,,函数不关于点对称,故③错误. 故选:B. 11.设数列满足,,则数列的前项和是( ) A. B. C. D. 【答案】B 【解析】设为数列的前项的和, 则. 因为, 所以, , 各式相加得:. 故选:B. 12.在棱长为的正方体中,,分别为,的中点,点在棱上,,若平面交于点,四棱锥的五个顶点都在球的球面上,则球半径为( ) A. B. C. D. 【答案】A 【解析】如图1,三点共线,连结从而平面,则与的交点即为点,又与相似,所以; 如图2,设的外接圆圆心为,半径为,球半径为,在中,,由正弦定理得,所以,在中,解得,即,所以所求的球的半径为. 第Ⅱ卷 本卷包括必考题和选考题两部分.第13~第21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.函数的单调减区间是______. 【答案】 【解析】函数的定义域为,,令,得函数的单调递减区间是,故答案为. 14.将名志愿者分派到个不同社区参加公益活动,要求每个社区至少安排人参加活动,则不同的分派方案共有________种;(用数字作答) 【答案】20 【解析】由题意得:两个社区的志愿者分别为2人与3人,或者3人与2人, 即. 故答案为: 15.设是公差不为零的等差数列,是与的等比中项,,则________; 【答案】2n 【解析】因为是与的等比中项, 所以, 所以,, 解得:, 所以. 故答案为:. 16.双曲线:的左、右焦点分别是,,若双曲线上存在点满足,则双曲线离心率的取值范围为________. 【答案】 【解析】设由 , 即,得 因为, 所以,即. 故答案为:. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.锐角的内角,,的对边分别为,,,设. (1)求; (2)若,且的面积为,求的周长. 解:(1)由已知及余弦定理可得: , ∴∵为锐角三角形,∴· (2)由正弦定理,可得, ∵,∴, 解得, 由余弦定理得, ,于是的周长为. 18.如图,在四棱锥中,平面平面,,,. (1)求证:; (2)若为线段上的一点,,,,求平面 与平面所成锐二面角的余弦值. (1)证明:设交于点,,,所以,所以,在中, 且,得,即, 又平面平面,平面平面,平面, 所以平面, 又平面,所以 (2)解:平面平面,平面平面,平面,,所以平面, 以为原点,以射线为轴,轴,轴正半轴建立空间直角坐标系,,,,,,, 设平面的法向量为,则, 取,得 设平面的法向量为, 则,取,得, 设所求角为,则, 所求的锐二面角余弦值为 19.已知椭圆:的长轴长是离心率的两倍,直线:=交于,两点,且的中点横坐标为. (1)求椭圆C的方程; (2)若,是椭圆上的点,为坐标原点,且满足,求证:,斜率的平方之积是定值. 解:(1)由椭圆:的长轴长是离心率的两倍 得,即………..① 设 联立和 整理得; 所以, 依题意得:,即……..②· 由①②得依题意得:, 所以椭圆的方程为. (2)设,由得 因为在椭圆上, 所以, =. 20.已知函数,. (1)求的单调区间; (2)若在上恒成立,求的取值范围. 解:(1). 当时,单调递增; 当时,单调递减. 所以的单调递增区间为,单调递减区间为 (2)由得 也就是,令 则=,由知,. 设,,在单调递增, 又,所以存在使得, 即. 当时,,在单调递减; 当时,,在单调递增; 所以=. 所以的取值范围是. 21.某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次,统计数据如下表所示: (1)根据散点图判断,在推广期内,扫码支付的人次关于活动推出天数的回归方程适合用来表示,求出该回归方程,并预测活动推出第天使用扫码支付的人次; (2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表: 支付方式 现金 会员卡 扫码 比例 商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.现有一名顾客购买了元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少? 参考数据:设,,, 参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为:,. 解:(1)由,两边同时取常用对数得:; 设 ,, , 把样本中心点代入,得:, , 关于回归方程为:; 把代入上式,; 活动推出第8天使用扫码支付的人次为331; (2)记一名顾客购物支付的费用为, 则的取值可能为:,,,; ;; ; 分布列为: 所以,一名顾客购物的平均费用为: (元) 请考生在第22、23二题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.在平面直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,曲线的参数方程为:(为参数),,为直线上距离为的两动点,点为曲线上的动点且不在直线上. (1)求曲线的普通方程及直线的直角坐标方程. (2)求面积的最大值. 解:(1)直线的极坐标方程化成, ,直线的直角坐标方程为, 曲线的参数方程化成:. 平方相加得,即 (2)设点,则到直线的距离为: , 当时,, 设的面积为,则. 23.已知函数,若的解集为. (1)求并解不等式; (2)已知:,若对一切实数都成立,求证:. 解:(1)由可得:,即, 解集为,所以. 当时,不等式化成,解得: 当时,不等式化成,解得: 综上所述,解集为… (2)由题意得对一切实数恒成立, 从而, , 的最小值为3. ,又, .查看更多