- 2021-06-24 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教A版极坐标与参数方程作业
2020届一轮复习人教A版 极坐标与参数方程 作业 1.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cos θ,直线l的参数方程为(t为参数,α为直线的倾斜角). (1)写出直线l的普通方程和曲线C的直角坐标方程; (2)若直线l与曲线C有唯一的公共点,求角α的大小. 解:(1)当α=时,直线l的普通方程为x=-1; 当α≠时,直线l的普通方程为y=(x+1)tan α. 由ρ=2cos θ,得ρ2=2ρcos θ, 所以x2+y2=2x, 即为曲线C的直角坐标方程. (2)把x=-1+tcos α,y=tsin α代入x2+y2=2x,整理得t2-4tcos α+3=0. 由Δ=16cos2α-12=0,得cos2α=, 所以cos α=或cos α=-, 故直线l的倾斜角α为或. 2.以极点为原点,以极轴为x轴正半轴建立平面直角坐标系,已知曲线C的极坐标方程为ρ=10,曲线C′的参数方程为(α为参数). (1)判断两曲线C和C′的位置关系; (2)若直线l与曲线C和C′均相切,求直线l的极坐标方程. 解:(1)由ρ=10得曲线C的直角坐标方程为x2+y2=100, 由得曲线C′的普通方程为(x-3)2+(y+4)2=25. 曲线C表示以(0,0)为圆心,10为半径的圆; 曲线C′表示以(3,-4)为圆心,5为半径的圆. 因为两圆心间的距离5等于两圆半径的差,所以圆C和圆C′的位置关系是内切. (2)由(1)建立方程组 解得可知两圆的切点坐标为(6,-8),且公切线的斜率为, 所以直线l的直角坐标方程为y+8=(x-6), 即3x-4y-50=0, 所以极坐标方程为3ρcos θ-4ρsin θ-50=0. 3.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy中,⊙O的参数方程为(θ为参数),过点(0,-)且倾斜角为α的直线l与⊙O交于A,B两点. (1)求α的取值范围; (2)求AB中点P的轨迹的参数方程. 解:(1)⊙O的直角坐标方程为x2+y2=1. 当α=时,l与⊙O交于两点. 当α≠时,记tan α=k,则l的方程为y=kx-.l与⊙O交于两点当且仅当<1,解得k<-1或k>1,即α∈或α∈. 综上,α的取值范围是. (2)l的参数方程为(t为参数,<α<). 设A,B,P对应的参数分别为tA,tB,tP,则tP=,且tA,tB满足t2-2tsin α+1=0. 于是tA+tB=2sin α,tP=sin α. 又点P的坐标(x,y)满足 所以点P的轨迹的参数方程是 (α为参数,<α<). 4.(2016新课标2理数23)选修4—4:坐标系与参数方程 在直角坐标系xoy中,圆C的方程为(x+6)2+y2=25. (I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程; (II)直线l的参数方程是(t为参数),l与C交于A、B两点,∣AB∣=,求l的斜率。 解:(I)展开得: 所以 所以C的极坐标方程: (II)将代入到得: 设 则 所以 所以 所以 所以 所以的斜率为 5.(2017新课标2理数22)[选修4―4:坐标系与参数方程] 在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)M为曲线上的动点,点P在线段OM上,且满足,求点P的轨迹的直角坐标方程; (2)设点A的极坐标为,点B在曲线上,求面积的最大值. 【答案】(1);(2). (2)设点B的极坐标为,由题设知,于是的面积 当时,S取得最大值,所以面积的最大值为. 【考点】圆的极坐标方程与直角坐标方程、三角形面积的最值 6. (2017新课标2理数22) [选修4-4:坐标系与参数方程] 在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2) 【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分 与两种情况.(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关系,求得,即得的斜率. 详解:(1)曲线的直角坐标方程为. 当时,的直角坐标方程为, 当时,的直角坐标方程为. (2)将的参数方程代入的直角坐标方程,整理得关于的方程 .① 因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则. 又由①得,故,于是直线的斜率.查看更多