【数学】2018届一轮复习人教A版函数y=Asin(ωx+φ)的图象学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习人教A版函数y=Asin(ωx+φ)的图象学案

专题19函数y=Asin(ωx+φ) 的图象 ‎1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;‎ ‎2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.‎ ‎ ‎ ‎1.“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的简图 ‎“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:‎ ‎(1)定点:如下表所示.‎ X ‎- ωx+φ ‎0‎ π ‎2π y=Asin(ωx+φ)‎ ‎0‎ A ‎0‎ ‎-A ‎0‎ ‎(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=Asin(ωx+φ)在一个周期内的图象. ‎ ‎(3)扩展:将所得图象,按周期向两侧扩展可得y=Asin(ωx+φ)在R上的图象.‎ ‎2.函数y=sin x的图象经变换得到y=Asin(ωx+φ)的图象的两种途径 ‎3.函数y=Asin(ωx+φ)的物理意义 当函数y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时,A叫做振幅,T=叫做周期,f=叫做频率,ωx+φ叫做相位,φ叫做初相.‎ 高频考点一 函数y=Asin(ωx+φ)的图象及变换 例1、已知函数y=2sin.‎ ‎(1)求它的振幅、周期、初相;‎ ‎(2)用“五点法”作出它在一个周期内的图象;‎ ‎(3)说明y=2sin的图象可由y=sinx的图象经过怎样的变换而得到.‎ 解 (1)y=2sin的振幅A=2,‎ 周期T==π,初相φ=.‎ ‎(2)令X=2x+,则y=2sin=2sinX.‎ 列表如下:‎ x ‎- X ‎0‎ π ‎2π y=sinX ‎0‎ ‎1‎ ‎0‎ ‎-1‎ ‎0‎ y=2sin ‎0‎ ‎2‎ ‎0‎ ‎-2‎ ‎0‎ 描点画出图象,如图所示:‎ 方法二 将y=sin x的图象上所有点的横坐标缩短为原来的倍(纵坐标不变),得到y=sin 2x的图象;‎ 再将y=sin 2x的图象向左平移个单位长度,得到y=sin=sin的图象;‎ 再将y=sin的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y=2sin的图象.‎ ‎【感悟提升】(1)五点法作简图:用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象.‎ ‎(2)图象变换:由函数y=sinx的图象通过变换得到y=Asin(ωx+φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.‎ ‎【变式探究】(1)把函数y=sin(x+)图象上各点的横坐标缩短到原来的(纵坐标不变),再将图象向右平移个单位长度,那么所得图象的一条对称轴方程为(  )‎ A.x=- B.x=- C.x= D.x= ‎(2)设函数f(x)=cosωx (ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于(  )‎ A.B.3C.6D.9‎ 答案 (1)A (2)C 高频考点二 由图象确定y=Asin(ωx+φ)的解析式 例2、(2016·全国Ⅱ卷)函数y=Asin(ωx+φ)的部分图象如图所示,则(  )‎ A.y=2sin B.y=2sin C.y=2sin D.y=2sin 解析 由题图可知,T=2=π,所以ω=2,由五点作图法可知2×+φ=,所以φ=-,所以函数的解析式为y=2sin,故选A.‎ 答案 A ‎【感悟提升】确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法:‎ ‎(1)求A,b,确定函数的最大值M和最小值m,‎ 则A=,b=.‎ ‎(2)求ω,确定函数的最小正周期T,则可得ω=.‎ ‎(3)求φ,常用的方法有:‎ ‎①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在下降区间上).‎ ‎②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:‎ ‎“最大值点”(即图象的“峰点”)时ωx+φ=;“最小值点”(即图象的“谷点”)时ωx+φ=.‎ ‎【变式探究】函数f(x)=2sin(ωx+φ)(ω>0,-<φ<) 的部分图象如图所示,则φ=________.‎ 答案 - 解析 ∵=π-π,‎ ‎∴T=π.‎ 又T=(ω>0),‎ ‎∴=π,‎ ‎∴ω=2.‎ 由五点作图法可知当x=π时,‎ ωx+φ=,‎ 即2×π+φ=,‎ ‎∴φ=-.‎ 高频考点三 三角函数图象性质的应用 例3、某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sint,t∈[0,24).‎ ‎(1)求实验室这一天的最大温差;‎ ‎(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?‎ 解 (1)因为f(t)=10-2(cost+sint)‎ ‎=10-2sin,‎ 又0≤t<24,所以≤t+<,‎ 当t=2时,sin=1;‎ 当t=14时,sin=-1.‎ 于是f(t)在[0,24)上取得最大值12 ℃,取得最小值8 ℃.‎ 故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.‎ ‎(2)依题意,当f(t)>11时实验室需要降温,‎ 由(1)得f(t)=10-2sin,‎ 故有10-2sin>11,即sin<-.‎ 又0≤t<24,因此0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.‎ ‎(1)求a和ω的值;‎ ‎(2)求函数f(x)在[0,π]上的单调递减区间.‎ 解 (1)f(x)=4cos ωx· sin+a ‎=4cos ωx·+a ‎=2sin ωxcos ωx+2cos2ωx-1+1+a ‎=sin 2ωx+cos 2ωx+1+a ‎=2sin+1+a.‎ 当sin=1时,f(x)取得最大值2+1+a=3+a.‎ 又f(x)最高点的纵坐标为2,∴3+a=2,即a=-1.‎ 又f(x)图象上相邻两个最高点的距离为π,‎ ‎∴f(x)的最小正周期为T=π,‎ ‎∴2ω==2,ω=1.‎ ‎【方法规律】函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间和对称性的确定,基本思想是把ωx+φ看做一个整体.在单调性应用方面,比较大小是一类常见的题目,依据是同一区间内函数的单调性.对称性是三角函数图象的一个重要性质,因此要抓住其轴对称、中心对称的本质,同时还要会综合利用这些性质解决问题,解题时可利用数形结合思想.‎ ‎【变式探究】 已知函数f(x)=2sin·cos-sin(x+π).‎ ‎(1)求f(x)的最小正周期;‎ ‎(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.‎ 解 (1)f(x)=2sin·cos-sin(x+π)‎ ‎=cos x+sin x=2sin,于是T==2π.‎ ‎(2)由已知得g(x)=f=2sin,‎ ‎∵x∈[0,π],∴x+∈,‎ ‎∴sin∈,‎ ‎∴g(x)=2sin∈[-1,2],‎ 故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.‎ ‎1.【2016年高考四川理数】为了得到函数的图象,只需把函数的图象上所有的点( )‎ ‎(A)向左平行移动个单位长度 (B)向右平行移动个单位长度 ‎(C)向左平行移动个单位长度  (D)向右平行移动个单位长度 ‎【答案】D ‎【解析】由题意,为了得到函数,只需把函数的图像上所有点向右移个单位,故选D.‎ ‎2.【2016高考新课标2理数】若将函数的图像向左平移个单位长度,则平移后图象的对称轴为( )‎ ‎(A) (B) ‎ ‎(C) (D)‎ ‎【答案】B ‎【解析】由题意,将函数的图像向左平移个单位得,则平移后函数的对称轴为,即,故选B.‎ ‎3.【2016年高考北京理数】将函数图象上的点向左平移() 个单位长度得到点,若位于函数的图象上,则( )‎ A.,的最小值为B. ,的最小值为 C.,的最小值为D.,的最小值为 ‎【答案】A ‎【解析】由题意得,,当s最小时,所对应的点为,此时,故选A.‎ ‎4.【2016高考新课标3理数】函数的图像可由函数的图像至少向右平移_____________个单位长度得到.‎ ‎【答案】‎ ‎【2015高考山东,理3】要得到函数的图象,只需要将函数的图象( )‎ ‎(A)向左平移个单位   (B)向右平移个单位 ‎(C)向左平移个单位    (D)向右平移个单位 ‎ ‎【答案】B ‎【解析】因为 ,所以要得到函数 的图象,只需将函数 的图象向右平移 个单位.故选B.‎ ‎【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数 ‎,据此函数可知,这段时间水深(单位:m)的最大值为( )‎ A.5 B.6 C.8 D.10‎ ‎【答案】C ‎【解析】由图象知:,因为,所以,解得:,所以这段时间水深的最大值是,故选C.‎ ‎【2015高考湖南,理9】将函数的图像向右平移个单位后得到函数的图像,若对满足的,,有,则( )‎ A. B. C. D.‎ ‎【答案】D.‎ ‎【解析】向右平移个单位后,得到,又∵,∴不妨 ‎,,∴,又∵,‎ ‎∴,故选D.‎ ‎【2015高考湖北,理17】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:‎ ‎0‎ ‎0‎ ‎5‎ ‎0‎ ‎(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数 的解析式;‎ ‎(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象. 若图象的一个对称中心为,求的最小值. ‎ ‎【答案】(Ⅰ);(Ⅱ).‎ ‎【解析】(Ⅰ)根据表中已知数据,解得. 数据补全如下表:‎ ‎0‎ ‎0‎ ‎5‎ ‎0‎ ‎0‎ 且函数表达式为. ‎ ‎(Ⅱ)由(Ⅰ)知 ,得.‎ ‎ 因为的对称中心为,. ‎ ‎ 令,解得, . ‎ 由于函数的图象关于点成中心对称,令,‎ 解得,. 由可知,当时,取得最小值. ‎ ‎(2014·四川卷)为了得到函数y=sin (2x+1)的图像,只需把函数y=sin 2x的图像上所有的点(  )‎ A.向左平行移动个单位长度 B.向右平行移动个单位长度 C.向左平行移动1个单位长度 D.向右平行移动1个单位长度 ‎【答案】A ‎ ‎【解析】因为y=sin(2x+1)=sin2,所以为得到函数y=sin(2x+1)的图像,只需要将y=sin 2x的图像向左平行移动个单位长度.‎ ‎(2014·安徽卷)若将函数f(x)=sin的图像向右平移φ个单位,所得图像关于y轴对称,则φ的最小正值是________.‎ ‎【答案】 ‎ ‎(2014·北京卷)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间上具有单调性,且f=f=-f,则f(x)的最小正周期为________.‎ ‎【答案】π ‎ ‎【解析】结合图像得=-,即T=π.‎ ‎(2014·福建卷)已知函数f(x)=cos x(sin x+cos x)-.‎ ‎(1)若0<α<,且sin α=,求f(α)的值;‎ ‎(2)求函数f(x)的最小正周期及单调递增区间.‎ ‎【解析】方法一:(1)因为0<α<,sin α=,所以cos α=.‎ 所以f(α)=×- ‎=.‎ 方法二:f(x)=sin xcos x+cos2x- ‎=sin 2x+- ‎=sin 2x+cos 2x ‎=sin.‎ ‎(1)因为0<α<,sin α=,所以α=,‎ 从而f(α)=sin=sin=.‎ ‎(2)T==π.‎ 由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.‎ 所以f(x)的单调递增区间为,k∈Z.‎ ‎(2014·广东卷)若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是(  )‎ A.l1⊥l4 ‎ B.l1∥l4‎ C.l1与l4既不垂直也不平行 ‎ D.l1与l4的位置关系不确定 ‎【答案】D ‎ ‎【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD A1B‎1C1D1中,设BB1是直线l1,BC是直线l2,AB是直线l3,则DD1是直线l4,l1∥l4;设BB1是直线l1,BC是直线l2,CC1是直线l3,CD是直线l4,则l1⊥l4.故l1与l4的位置关系不确定.‎ ‎(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:‎ f(t)=10-cost-sint,t∈[0,24).‎ ‎(1)求实验室这一天的最大温差.‎ ‎(2)若要求实验室温度不高于‎11℃‎,则在哪段时间实验室需要降温?‎ ‎【解析】(1)因为f(t)=10-2=10-2sin,‎ 又0≤t<24,所以≤t+<,-1≤sin≤1.‎ 当t=2时,sin=1;‎ 当t=14时,sin=-1. ‎ 于是f(t)在[0,24)上取得的最大值是12,最小值是8.‎ 故实验室这一天的最高温度为‎12 ℃‎,最低温度为‎8 ℃‎,最大温差为‎4 ℃‎.‎ ‎(2)依题意,当f(t)>11时,实验室需要降温.‎ 由(1)得f(t)=10-2sin,‎ 故有10-2sin>11,‎ 即sin<-.‎ 又0≤t<24,因此4,解得m>2或m<-2,故m的取值范围是(-∞,-2)∪(2,+∞).‎ ‎(2014·山东卷)已知向量a=(m,cos 2x),b=(sin 2x,n),函数f(x)=a·b,且 y=f(x)的图像过点和点.‎ ‎(1)求m,n的值;‎ ‎(2)将y=f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图像,若y=g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.‎ ‎【解析】(1)由题意知,f(x)==msin 2x+ncos 2x.‎ 因为y=f(x)的图像过点和点,‎ 所以 即 解得m=,n=1.‎ ‎(2)由(1)知f(x)=sin 2x+cos 2x=2sin.‎ 由题意知,g(x)=f(x+φ)=2sin.‎ 设y=g(x)的图像上符合题意的最高点为(x0,2).‎ 由题意知,x+1=1,所以x0=0,‎ 即到点(0,3)的距离为1的最高点为(0,2).‎ 将其代入y=g(x)得,sin=1.‎ 因为0<φ<π,所以φ=.‎ 因此,g(x)=2sin=2cos 2x.‎ 由2kπ-π≤2x≤2kπ,k∈Z得kπ-≤x≤kπ,k∈Z,‎ 所以函数y=g(x)的单调递增区间为,k∈Z.‎ ‎(2014·陕西卷)函数f(x)=cos的最小正周期是(  )‎ A. B.π C.2π D.4π ‎【答案】B ‎ ‎【解析】已知函数y=Acos(ωx+φ)(A>0,ω>0)的周期为T=,故函数f(x)的最小正周期T==π.‎ ‎(2014·四川卷)已知函数f(x)=sin.‎ ‎(1)求f(x)的单调递增区间;‎ ‎(2)若α是第二象限角,f=coscos 2α,求cos α-sin α的值.‎ ‎【解析】(1)因为函数y=sin x的单调递增区间为,k∈Z,‎ 由-+2kπ≤3x+≤+2kπ,k∈Z,‎ 得-+≤x≤+,k∈Z.‎ 所以,函数f(x)的单调递增区间为,k∈Z.‎ ‎(2)由已知,得sin=cos(cos2α-sin2α),‎ 所以sin αcos+cos αsin=(cos2 α-sin2 α),‎ 即sin α+cos α=(cos α-sin α)2(sin α+cos α).‎ 当sin α+cos α=0时,由α是第二象限角,‎ 得α=+2kπ,k∈Z,‎ 此时,cos α-sin α=-.‎ 当sin α+cos α≠0时,(cos α-sin α)2=.‎ 由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-.‎ 综上所述,cos α-sin α=-或-.‎ ‎(2014·天津卷)已知函数f(x)=cos x·sin-cos2x+,x∈R.‎ ‎(1)求f(x)的最小正周期;‎ ‎(2)求f(x)在闭区间上的最大值和最小值.‎ ‎【解析】(1)由已知,有 f(x)=cos x·-cos2x+ ‎=sin x·cos x-cos2x+ ‎=sin 2x-(1+cos 2x)+ ‎=sin 2x-cos 2x ‎=sin,‎ 所以f(x)的最小正周期T==π.‎ ‎(2)因为f(x)在区间上是减函数,在区间上是增函数,f=-,f=-,f=,‎ 所以函数f(x)在区间上的最大值为,最小值为-.‎ ‎(2014·浙江卷)为了得到函数y=sin 3x+cos 3x的图像,可以将函数y=cos 3x的图像(  )‎ A.向右平移个单位 B.向左平移个单位 C.向右平移个单位 D.向左平移个单位 ‎【答案】C ‎ ‎【解析】y=sin 3x+cos 3x=cos=cos,所以将函数y=cos 3x的图像向右平移个单位可以得到函数y=sin 3x+cos 3x的图像,故选C.‎ ‎(2014·重庆卷)已知函数f(x)=sin(ωx+φ)的图像关于直线x=对称,且图像上相邻两个最高点的距离为π.‎ ‎(1)求ω和φ的值;‎ ‎(2)若f=,求cos的值.‎ ‎ ‎ ‎(2)由(1)得ƒ=sin(2×-)=,‎ 所以sin=.‎ 由<α<得0<α-<,‎ 所以cos===.‎ 因此cos ‎=sin α ‎=sin ‎=sincos+cossin ‎=×+× ‎=.‎ ‎1. 若函数y=sin(ωx-φ)(ω>0,|φ|<)在区间上的图象如图所示,则ω,φ的值分别是(  )‎ A.ω=2,φ= B.ω=2,φ=- C.ω=,φ= D.ω=,φ=- 解析 由图可知,T=2=π,所以ω==2,又sin=0,所以-φ=kπ(k∈Z),即φ=-kπ(k∈Z),而|φ|<,所以φ=,故 选A.‎ 答案 A ‎2.将函数f(x)=sin x-cos x的图象沿着x轴向右平移a(a>0)个单位后的图象关于y轴对称,则a的最小值是(  )‎ A. B. C. D. 解析 依题意得f(x)=2sin,因为函数f(x-a)=2sin的图象关于y轴对称,所以sin=±1,a+=kπ+,k∈Z,即a=kπ+,k∈Z,‎ 因此正数a的最小值是,选B.‎ 答案 B ‎3.函数f(x)=3sinx-logx的零点的个数是(  )‎ A.2 B.3 C.4 D.5‎ 解析 函数y=3sinx的周期T==4,由logx=3,可得x=.由logx=-3,可得x=8.在同一平面直角坐标系中,作出函数y=3sinx和y=logx的图象(如图所示),易知有5个交点,故函数f(x)有5个零点.‎ 答案 D ‎4.如图是函数f(x)=sin 2x和函数g(x)的部分图象,则g(x)的图象可能是由f(x)的图象(  )‎ A.向右平移个单位得到的 B.向右平移个单位得到的 C.向右平移个单位得到的 D.向右平移个单位得到的 ‎5.设函数f(x)=sin,则下列结论正确的是(  )‎ A.f(x)的图象关于直线x=对称 B.f(x)的图象关于点对称 C.f(x)的最小正周期为π,且在上为增函数 D.把f(x)的图象向右平移个单位,得到一个偶函数的图象 解析 对于函数f(x)=sin,当x=时,‎ f=sin =,故A错;当x=时,‎ f=sin =1,故不是函数的对称点,故B错;函数的最小正周期为T==π,当x∈时,‎ ‎2x+∈,此时函数为增函数,故C正确;‎ 把f(x)的图象向右平移个单位,得到g(x)=sin=sin 2x,函数是奇函数,故D错.‎ 答案 C ‎6.已知函数f(x)=2sin ωx在区间上的最小值为-2,则ω的取值范围是(  )‎ A.∪[6,+∞) B.∪ C.(-∞,-2]∪[6,+∞) D.(-∞,-2]∪ 解析 当ω>0时,-ω≤ωx≤ω,由题意知-ω≤-,即ω≥;当ω<0时,ω≤ωx≤-ω,由题意知ω≤-,∴ω≤-2.‎ 综上可知,ω的取值范围是(-∞,-2]∪.‎ 答案 D ‎7.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为________.‎ 解析 f(x)=sin ωx+cos ωx=2sin.‎ 由2sin=1得sin=,‎ ‎∴ωx+=2kπ+或ωx+=2kπ+π(k∈Z).‎ 令k=0,得ωx1+=,ωx2+=π,‎ ‎∴x1=0,x2=.‎ 由|x1-x2|=,得=,∴ω=2.‎ 故f(x)的最小正周期T==π.‎ 答案 π ‎8.某城市一年中12个月的平均气温与月份的关系可近似地用函数y=a+Acos(x=1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.‎ 解析 因为当x=6时,y=a+A=28;‎ 当x=12时,y=a-A=18,所以a=23,A=5,‎ 所以y=f(x)=23+5cos,‎ 所以当x=10时,f(10)=23+5cos ‎=23-5×=20.5.‎ 答案 20.5‎ ‎9.已知函数f(x)=sin(ωx+φ)的图象上的两个相邻的最高点和最低点的距离为2,且过点,则函数f(x)的解析式为________.‎ 解析 据已知两个相邻最高和最低点距离为2,可得=2,解得T=4,故ω==,‎ 即f(x)=sin.又函数图象过点,‎ 故f(2)=sin=-sin φ=-,‎ 又-≤φ≤,‎ 解得φ=,故f(x)=sin.‎ 答案 f(x)=sin ‎10.已知函数f(x)=sin ωx+cos,其中x∈R,ω>0.‎ ‎(1)当ω=1时,求f的值;‎ ‎(2)当f(x)的最小正周期为π时,求f(x)在上取得最大值时x的值.‎ 解 (1)当ω=1时,f=sin +cos ‎=+0=.‎ ‎11.已知函数f(x)=sin(ωx+φ)的图象关于直线x=对称,且图象上相邻最高点的距离为π.‎ ‎(1)求f的值;‎ ‎(2)将函数y=f(x)的图象向右平移个单位后,得到y=g(x)的图象,求g(x)的单调递减区间.‎ 解 (1)因为f(x)的图象上相邻最高点的距离为π,所以f(x)的最小正周期T=π,从而ω==2.‎ 又f(x)的图象关于直线x=对称,所以2×+φ=kπ+(k∈Z),因为-≤φ<,所以k=0,‎ 所以φ=-=-,所以f(x)=sin,‎ 则f=sin=sin =.‎ ‎(2)将f(x)的图象向右平移个单位后,得到 f的图象,‎ 所以g(x)=f=sin ‎=sin.‎ 当2kπ+≤2x-≤2kπ+(k∈Z),‎ 即kπ+≤x≤kπ+(k∈Z)时,g(x)单调递减.‎ 因此g(x)的单调递减区间为(k∈Z).‎ ‎12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如下表:‎ ωx+φ ‎0‎ π ‎2π x Asin(ωx+φ)‎ ‎0‎ ‎5‎ ‎-5‎ ‎0‎ ‎(1)请将上表数据补充完整,并求出函数f(x)的解析式;‎ ‎(2)将y=f(x)的图象向左平移个单位,得到函数y=g(x)的图象.若关于x的方程g(x)-(2m+1)=0在区间上有两个不同的解,求实数m的取值范围.‎ 解 (1)根据表中已知数据,‎ 解得A=5,ω=2,φ=-.‎ 数据补全如下表:‎ ωx+φ ‎0‎ π ‎2π x Asin(ωx+φ)‎ ‎0‎ ‎5‎ ‎0‎ ‎-5‎ ‎0‎ 且函数表达式为f(x)=5sin.‎ ‎(2)通过平移,g(x)=5sin, ‎ 方程g(x)-(2m+1)=0可看成函数y=g(x)和函数y=2m+1的图象在上有两个交点,‎ 当x∈时,2x+∈,为使直线y=2m+1与函数y=g(x)的图象在上有两个交点,结合函数y=g(x)在[0,]上的图象,‎ 只需≤2m+1<5,解得≤m<2.‎ 即实数m的取值范围为.‎
查看更多

相关文章

您可能关注的文档