2020届二轮复习(文)第2部分专题5第3讲 圆锥曲线中的综合问题学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020届二轮复习(文)第2部分专题5第3讲 圆锥曲线中的综合问题学案

第3讲 圆锥曲线中的综合问题 ‎ 圆锥曲线中的定点、定值问题(5年3考)‎ ‎[高考解读] 定点、定值问题是解析几何中的常见问题,此类试题多考查圆锥曲线的基本知识、解析几何的基本方法,难度不高,不同层次的同学均能顺利解决.此类考题注重考查通性通法的应用,考查考生的逻辑推理和数学运算的核心素养.‎ 角度一:定点问题 ‎1.(2017·全国卷Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.‎ ‎(1)求点P的轨迹方程;‎ ‎(2)设点Q在直线x=-3上,且·=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.‎ 切入点:①点M在椭圆C上,且MN⊥x轴;②=.‎ 关键点:将·=1转化为向量的坐标运算,进而证明直线l过C的左焦点F.‎ ‎[解] (1)设P(x,y),M(x0,y0),‎ 则N(x0,0),=(x-x0,y),=(0,y0).‎ 由=得x0=x,y0=y.‎ 因为M(x0,y0)在C上,所以+=1.‎ 因此点P的轨迹方程为x2+y2=2.‎ ‎(2)证明:由题意知F(-1,0).设Q(-3,t),P(m,n),则 =(-3,t),=(-1-m,-n),·=3+‎3m-tn,‎ =(m,n),=(-3-m,t-n).‎ 由·=1得-‎3m-m2+tn-n2=1.‎ 又由(1)知m2+n2=2,故3+‎3m-tn=0.‎ 所以·=0,即⊥.‎ 又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.‎ 角度二:定值问题 ‎2.(2019·全国卷Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.‎ ‎(1)若A在直线x+y=0上,求⊙M的半径;‎ ‎(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.‎ 切入点:①⊙M过点A,B;②⊙M与直线x+2=0相切.‎ 关键点:①确定圆心M的坐标;②选用合适的参数表示|MA|-|MP|的值.‎ ‎[解] (1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).‎ 因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.‎ 由已知得|AO|=2,又MO⊥AO,故可得‎2a2+4=(a+2)2,解得a=0或a=4.‎ 故⊙M的半径r=2或r=6.‎ ‎(2)存在定点P(1,0),使得|MA|-|MP|为定值.‎ 理由如下:‎ 设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2.‎ 由于MO⊥AO,故可得x2+y2+4=(x+2)2,化简得M的轨迹方程为y2=4x.‎ 因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,‎ 所以|MP|=x+1.‎ 因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点P.‎ ‎[教师备选题]‎ ‎1.(2017·全国卷Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.‎ ‎(1)求C的方程;‎ ‎(2)设直线l不经过P2点且与C相交于A,B两点.若直线P‎2A与直线P2B的斜率的和为-1,证明:l过定点.‎ ‎[解] (1)由于P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点.‎ 又由+>+知,椭圆C不经过点P1,‎ 所以点P2在椭圆C上.‎ 因此解得故椭圆C的方程为+y2=1.‎ ‎(2)证明:设直线P‎2A与直线P2B的斜率分别为k1,k2.‎ 如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为,,则k1+k2=-=-1,得t=2,不符合题设.‎ 从而可设l:y=kx+m(m≠1).‎ 将y=kx+m代入+y2=1得(4k2+1)x2+8kmx+‎4m2‎-4=0.‎ 由题设可知Δ=16(4k2-m2+1)>0.‎ 设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.‎ 而k1+k2=+ ‎=+ ‎=.‎ 由题设k1+k2=-1,‎ 故(2k+1)x1x2+(m-1)(x1+x2)=0.‎ 即(2k+1)·+(m-1)·=0,解得k=-.‎ 当且仅当m>-1时,Δ>0,‎ 于是l:y=-x+m,‎ 即y+1=-(x-2),‎ 所以l过定点(2,-1).‎ ‎2.(2018·北京高考)已知抛物线C:y2=2px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.‎ ‎(1)求直线l的斜率的取值范围;‎ ‎(2)设O为原点,=λ,=μ,求证:+为定值.‎ ‎[解] (1)因为抛物线y2=2px过点(1,2),‎ 所以2p=4,即p=2.‎ 故抛物线C的方程为y2=4x.‎ 由题意知,直线l的斜率存在且不为0.‎ 设直线l的方程为y=kx+1(k≠0),‎ 由得k2x2+(2k-4)x+1=0.‎ 依题意Δ=(2k-4)2-4×k2×1>0,‎ 解得k<0或00)的直线交E于A,M两点,点N在E上,MA⊥NA.‎ ‎(1)当|AM|=|AN|时,求△AMN的面积;‎ ‎(2)当2|AM|=|AN|时,证明:0.‎ 由已知及椭圆的对称性知,直线AM的倾斜角为.‎ 又A(-2,0),因此直线AM的方程为y=x+2.‎ 将x=y-2代入+=1得7y2-12y=0.‎ 解得y=0或y=,所以y1=.‎ 因此△AMN的面积S△AMN=2×××=.‎ ‎(2)证明:设直线AM的方程为y=k(x+2)(k>0),‎ 代入+=1得(3+4k2)x2+16k2x+16k2-12=0.‎ 由x1·(-2)=得x1=,‎ 故|AM|=|x1+2|=.‎ 由题意,设直线AN的方程为y=-(x+2),‎ 故同理可得|AN|=.‎ 由2|AM|=|AN|得=,‎ 即4k3-6k2+3k-8=0.‎ 设f(t)=4t3-6t2+3t-8,则k是f(t)的零点.f′(t)=12t2-12t+3=3(2t-1)2≥0,所以f(t)在(0,+∞)单调递增.又f()=15-26<0,f(2)=6>0,因此f(t)在(0,+∞)上有唯一的零点,且零点k在(,2)内,所以<k<2.‎ ‎[教师备选题]‎ ‎1.(2018·浙江高考)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.‎ ‎(1)设AB中点为M,证明:PM垂直于y轴;‎ ‎(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.‎ ‎[解] (1)证明:设P(x0,y0),A,B.‎ 因为PA,PB的中点在抛物线上,‎ 所以y1,y2为方程2=4·,‎ 即y2-2y0y+8x0-y=0的两个不同的实根.‎ 所以y1+y2=2y0,‎ 因此,PM垂直于y轴.‎ ‎(2)由(1)可知, 所以|PM|=(y+y)-x0=y-3x0,‎ ‎|y1-y2|=2.‎ 因此,△PAB的面积 S△PAB=|PM|·|y1-y2|=(y-4x0).‎ 因为x+=1(x0<0),‎ 所以y-4x0=-4x-4x0+4∈[4,5],‎ 因此,△PAB面积的取值范围是.‎ ‎2.(2017·山东高考)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.‎ ‎(1)求椭圆C的方程;‎ ‎(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.‎ ‎[解] (1)由椭圆的离心率为,‎ 得a2=2(a2-b2),‎ 又当y=1时,x2=a2-,得a2-=2,‎ 所以a2=4,b2=2.‎ 因此椭圆方程为+=1.‎ ‎(2)设A(x1,y1),B(x2,y2).‎ 联立方程,得 得(2k2+1)x2+4kmx+‎2m2‎-4=0.‎ 由Δ>0得m2<4k2+2,(*)‎ 且x1+x2=-,‎ 因此y1+y2=,‎ 所以D.‎ 又N(0,-m),‎ 所以|ND|2=2+2,‎ 整理得|ND|2=.‎ 因为|NF|=|m|,‎ 所以==1+.‎ 令t=8k2+3,t≥3,‎ 故2k2+1=.‎ 所以=1+=1+.‎ 令y=t+,‎ 所以y′=1-.‎ 当t≥3时,y′>0,‎ 从而y=t+在[3,+∞)上单调递增,‎ 因此t+≥,‎ 等号当且仅当t=3时成立,此时k=0,‎ 所以≤1+3=4.‎ 由(*)得-0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.‎ ‎(1)求;‎ ‎(2)除H以外,直线MH与C是否有其他公共点?说明理由.‎ 切入点:①l:y=t(t≠0);‎ ‎②M关于点P的对称点为N;‎ ‎③ON的延长线交C于点H.‎ 关键点:①通过直线l与y轴及抛物线C的交点确定N点,由此确定H点,求出N点、H点的坐标;‎ ‎②将直线与抛物线的交点问题转化为方程组解的问题.‎ ‎[解] (1)如图,由已知得M(0,t),P.‎ 又N为M关于点P的对称点,故N,‎ 故直线ON的方程为y=x,‎ 将其代入y2=2px整理得px2-2t2x=0,‎ 解得x1=0,x2=.因此H.‎ 所以N为OH的中点,即=2.‎ ‎(2)直线MH与C除H以外没有其他公共点.理由如下:‎ 直线MH的方程为y-t=x,即x=(y-t).‎ 代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,‎ 即直线MH与C只有一个公共点,‎ 所以除H以外,直线MH与C没有其他公共点.‎ ‎[教师备选题]‎ ‎(2015·全国卷Ⅱ)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.‎ ‎(1)证明:直线OM的斜率与l的斜率的乘积为定值;‎ ‎(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.‎ ‎[解] (1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).‎ 将y=kx+b代入9x2+y2=m2,得(k2+9)x2+2kbx+b2-m2=0,故xM==,yM=kxM+b=.‎ 于是直线OM的斜率kOM==-,即kOM·k=-9.‎ 所以直线OM的斜率与l的斜率的乘积为定值.‎ ‎(2)四边形OAPB能为平行四边形.‎ 因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.‎ 由(1)得OM的方程为y=-x.‎ 设点P的横坐标为xP.‎ 由得x=,‎ 即xP=.‎ 将点的坐标代入直线l的方程得b=,‎ 因此xM=.‎ 四边形OAPB为平行四边形,当且仅当线段AB与线段OP互相平分,即xP=2xM.‎ 于是=2×,解得k1=4-,k2=4+.‎ 因为ki>0,ki≠3,i=1,2,所以当直线l的斜率为4-或4+时,四边形OAPB为平行四边形.‎ 解决探索性问题的注意事项 存在性问题,先假设存在,推证满足条件的结论,若结论正确,则存在,若结论不正确,则不存在.‎ (1)当条件和结论不唯一时,要分类讨论.‎ (2)当给出结论要推导出存在的条件时,先假设成立,再推出条件.‎ (3)当条件和结论都未知,按常规方法解题很难时,要开放思维,采取其他的途径.‎ ‎1.(最值的存在性问题)已知椭圆C:+=1(a>b>0)的离心率是,且经过点.‎ ‎(1)求椭圆C的标准方程;‎ ‎(2)[一题多解]过椭圆C的右焦点F的直线l与椭圆C相交于A,B两点,点B关于x轴的对称点为H,试问△AFH的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.‎ ‎[解] (1)由e==可设a=2t,c=t(t>0),‎ 所以b==t,即椭圆C的方程为+=1,‎ 把点代入椭圆C的方程得t=1,‎ 所以a=2,b=1,‎ 所以椭圆C的标准方程为+y2=1.‎ ‎(2)法一:显然直线l的斜率存在且不为0,设直线l的方程为x=my+,A(x1,y1),B(x2,y2),则H(x2,-y2),‎ 联立消去x得,(m2+4)y2+2my-1=0.‎ 显然Δ>0,‎ 由根与系数的关系得y1+y2=,y1y2=,‎ 直线AH的方程为y=(x-x2)-y2,‎ 令y=0,得x====,‎ 即直线AH与x轴交于一个定点,记为M,‎ 所以S△AFH=|FM|×|y1+y2|‎ ‎=×× ‎= ‎≤.‎ 所以△AFH的面积存在最大值,且最大值为.‎ 法二:显然直线l的斜率存在且不为0,设直线l的方程为x=my+,A ‎(x1,y1),B(x2,y2),则H(x2,-y2),‎ 联立消去x得,(m2+4)y2+2my-1=0.‎ 显然Δ>0,‎ 由根与系数的关系得y1+y2=,y1y2=,‎ 作AA1⊥x轴于A1(图略),设HB交x轴于点B1,x1>x2,y1>0,y2<0,则m>0,‎ ‎△AFH的面积S=S梯形AA1B1H-S△AA‎1F-S△HB‎1F=-(x1-c)|y1|-(c-x2)|y2|=[(y1+y2)-x2y1-x1y2]=[(y1+y2)-(my2+)y1-(my1+)y2]=-my1y2==≤,所以△AFH的面积存在最大值,且最大值为.‎ ‎2.(点的存在性问题)已知动圆C过定点F(1,0),且与定直线x=-1相切.‎ ‎(1)[一题多解]求动圆圆心C的轨迹E的方程;‎ ‎(2)过点M(-2,0)的任一条直线l与轨迹E交于不同的两点P,Q,试探究在x轴上是否存在定点N(异于点M),使得∠QNM+∠PNM=π?若存在,求点N的坐标;若不存在,请说明理由.‎ ‎[解] (1)法一:依题意知,动圆圆心C到定点F(1,0)的距离与到定直线x=-1的距离相等,‎ 由抛物线的定义,可得动圆圆心C的轨迹E是以F(1,0)为焦点,x=-1为准线的抛物线,其中p=2.‎ ‎∴动圆圆心C的轨迹E的方程为y2=4x.‎ 法二:设动圆圆心C(x,y),依题意得=|x+1|,‎ 化简得y2=4x,即为动圆圆心C的轨迹E的方程.‎ ‎(2)假设存在点N(x0,0)满足题设条件.‎ 由∠QNM+∠PNM=π可知,直线PN与QN的斜率互为相反数,即 kPN+kQN=0.①‎ 易知直线PQ的斜率必存在且不为0,设直线PQ:x=my-2,‎ 由得y2-4my+8=0.‎ 由Δ=(-‎4m)2-4×8>0,得m>或m<-.‎ 设P(x1,y1),Q(x2,y2),则y1+y2=‎4m,y1y2=8.‎ 由①得kPN+kQN=+==0,‎ ‎∴y1(x2-x0)+y2(x1-x0)=0,‎ 即y1x2+y2x1-x0(y1+y2)=0.‎ 消去x1,x2,得y1y+y2y-x0(y1+y2)=0,‎ 即y1y2(y1+y2)-x0(y1+y2)=0.‎ ‎∵y1+y2≠0,∴x0=y1y2=2,‎ ‎∴存在点N(2,0),使得∠QNM+∠PNM=π.‎
查看更多

相关文章

您可能关注的文档