2019届二轮复习(理)专题56古典概型学案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019届二轮复习(理)专题56古典概型学案(全国通用)

‎1.理解古典概型及其概率计算公式;‎ ‎2.会计算一些随机事件所包含的基本事件数及事件发生的概率. ‎ ‎1.基本事件的特点 ‎(1)任何两个基本事件是互斥的.‎ ‎(2)任何事件(除不可能事件)都可以表示成基本事件的和.‎ ‎2.古典概型的两个特点 ‎(1)有限性:在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;‎ ‎(2)等可能性:每个基本事件发生的可能性是均等的.‎ ‎3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.‎ ‎4.古典概型的概率公式 P(A)=.‎ 高频考点一、 简单的古典概型的概率 ‎【例1】 将一颗骰子先后抛掷2次,观察向上的点数,求:‎ ‎(1)两数中至少有一个奇数的概率;学 ]‎ ‎(2)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的外部或圆上的概率.‎ 解 由题意,先后掷2次,向上的点数(x,y)共有n=6×6=36种等可能结果,为古典概型.‎ ‎(1)记“两数中至少有一个奇数”为事件B,则事件B与“两数均为偶数”为对立事件,记为B.‎ ‎∵事件包含的基本事件数m=CC=9.‎ ‎∴P()==,则P(B)=1-P()=,‎ 因此,两数中至少有一个奇数的概率为.‎ ‎(2)点(x,y)在圆x2+y2=15的内部记为事件C,则C表示“点(x,y)在圆x2+y2=15上或圆的外部”.‎ 又事件C包含基本事件:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共有8个.∴P(C)==,从而P()=1-P(C)=1-=. ‎ ‎∴点(x,y)在圆x2+y2=15上或圆外部的概率为.‎ ‎【方法规律】计算古典概型的概率可分三步:‎ ‎(1)算出基本事件的总个数n;‎ ‎(2)求出事件A所包含的基本事件个数m;‎ ‎(3)代入公式求出概率P.解题时可根据需要灵活选择列举法、列表法或树形图法.‎ ‎【变式探究】 (1)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为(  )‎ A. B. C. D.1‎ ‎(2)(2016·江苏卷)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .‎ 答案 (1)B (2) 高频考点二 复杂的古典概型的概率 ‎【例2】某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.‎ ‎(1)求A中学至少有1名学生入选代表队的概率.‎ ‎(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.‎ 解 (1)由题意,参加集训的男、女生各有6名.‎ 参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为=,‎ 因此,A中学至少有1名学生入选代表队的概率为 ‎1-=.‎ ‎【方法规律】(1)求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.‎ ‎(2)注意区别排列与组合,以及计数原理的正确使用.‎ ‎【变式探究】一个盒子里装有大小均匀的6个小球,其中有红球4个,编号分别为1,2,3,4,白球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).‎ ‎(1)求取出的3个小球中,含有编号为4的小球的概率;‎ ‎(2)在取出的3个小球中,求小球编号最大值为4的概率.‎ 解 基本事件总数为n=C=20,‎ ‎(1)取出的3个小球中,含有编号为4的小球的基本事件个数为m=CC+CC=16,‎ ‎∴取出的3个球中,含有编号为4的小球的概率P===.‎ ‎(2)小球编号最大值为4的基本事件个数为CC+CC=9,‎ 所以,小球编号最大值为4的概率P=. ‎ 高频考点三 古典概型与统计的综合应用 ‎【例3】 从某地高中男生中随机抽取100名同学,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图所示).由图中数据可知体重的平均值为 kg;若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取12人参加一项活动,再从这12个人中选两人当正副队长,则这两人体重不在同一组内的概率为 .‎ 答案 64.5  ‎【方法规律】有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.‎ ‎【变式探究】 某车间共有12名工人,随机抽取6名作为样本,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.要从这6人中,随机选出2人参加一项技术比赛,选出的2人至少有1人为优秀工人的概率为(  )‎ A. B. C. D. 解析 由已知得,样本均值为==22,故优秀工人只有2人.‎ 故所求概率为P===,故选C.‎ 答案 C ‎1.(2017·山东)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是(  )‎ A. B. C. D. 答案 C 解析 由题意,得P(抽到的2张卡片上的数奇偶性不同)==.故选C.‎ ‎2. (2017·全国Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为(  )‎ A. B. C. D. 答案 D 学 ]‎ 解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:‎ 基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P==.‎ ‎3.(2017·山东)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.‎ ‎(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;‎ ‎(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.‎ ‎(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9个.‎ 包括A1但不包括B1的事件所包含的基本事件有:‎ ‎{A1,B2},{A1,B3},共2个,‎ 则所求事件的概率为P=.‎ ‎1.(2016·全国Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(  )‎ A. B. C. D. 答案 C ‎2.(2016·全国Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(  )‎ A. B. C. D. 答案 C 解析 第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为,故选C. ‎ ‎3.(2016·四川)从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是 . . ]‎ 答案  解析 从2,3,8,9中任取2个不同的数字,记为(a,b),则有(2,3),(3,2),(2,8),(8,2),(2,9),(9,2),(3,8),(8,3),(3,9),(9,3),(8,9),(9,8),共有12种情况,其中符合logab为整数的有log39和log28两种情况,∴P==. ‎ ‎4.(2016·北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(  )‎ A. B. C. D. 解析 甲被选中的概率为P===.‎ 答案 B ‎5.(2016·上海卷)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为 .‎ 解析 甲同学从四种水果中选两种,选法种数有C,乙同学的选法种数为C,则两同学的选法种数为C·C,两同学各自所选水果相同的选法种数为C,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为P==.‎ 答案  ‎6.(2016·山东)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:‎ ‎①若xy≤3,则奖励玩具一个;‎ ‎②若xy≥8,则奖励水杯一个;‎ ‎③其余情况奖励饮料一瓶.‎ 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.‎ ‎(1)求小亮获得玩具的概率;‎ ‎(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.‎ ‎ ‎ ‎(2)记“xy≥8”为事件B,“3<xy<8”为事件C.‎ 则事件B包含的基本事件共6个,‎ 即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). ]‎ 所以P(B)==.‎ 事件C包含的基本事件共5个,‎ 即(1,4),(2,2),(2,3),(3,2),(4,1).‎ 所以P(C)=.因为>,‎ 所以小亮获得水杯的概率大于获得饮料的概率. ‎ ‎1.(2015·江苏卷)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 .‎ 答案  ‎ ‎
查看更多

相关文章

您可能关注的文档